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abbreviations
Table of common abbreviations

Syntax
tbl = abbreviations
tbl = abbreviations('Language',language)

Description
Abbreviations containing periods like "appt.", "Dr.", and "fig." affect sentence detection. The
addSentenceDetails and addPartOfSpeechDetails functions use tables of abbreviations to
detect sentence boundaries. The abbreviations function outputs the default table used by these
functions. You can use this table to help create custom tables of abbreviations to specify sentence
detection behavior.

The function supports English, Japanese, German, and Korean language. The Japanese and Korean
abbreviation lists are empty because in these languages, abbreviations do not usually impact
sentence detection.

tbl = abbreviations returns a table of common English abbreviations.

tbl = abbreviations('Language',language) specifies the abbreviation language.

Examples

Table of Abbreviations

View a table of abbreviations. You can use this table to detect abbreviations and sentences when
using addSentenceDetails.

tbl = abbreviations;
head(tbl)

ans=8×2 table
    Abbreviation     Usage 
    ____________    _______

       "ATS"        regular
       "Ao"         regular
       "BEF"        regular
       "Ba"         regular
       "Bd"         regular
       "Bi"         regular
       "Bq"         regular
       "Cent"       regular
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Table of German Abbreviations

View a table of German abbreviations. Use this table to help create custom tables of abbreviations for
sentence detection when using addSentenceDetails.

tbl = abbreviations('Language','de');
head(tbl)

ans=8×2 table
    Abbreviation     Usage 
    ____________    _______

       "A.T"        regular
       "ABl"        regular
       "Abb"        regular
       "Abdr"       regular
       "Abf"        regular
       "Abfl"       regular
       "Abh"        regular
       "Abk"        regular

Input Arguments
language — Abbreviation language
'en' (default) | 'ja' | 'de' | 'ko'

Abbreviation language, specified as one of the following:

• 'en' – English
• 'ja' – Japanese
• 'de' – German
• 'ko' – Korean

If you specify 'ja' or 'ko', then the function returns an empty table. For more information about
language support in Text Analytics Toolbox™, see “Language Considerations”.

Output Arguments
tbl — Table of abbreviations
table

Table of abbreviations. The addSentenceDetails and splitSentences functions, by default, use
this table to detect sentence boundaries. This table only contains abbreviations typically written with
periods.

The table has two variables:

• Abbreviation – Abbreviation, specified as a string
• Usage – Type of abbreviation, specified as a categorical scalar

The following table describes the possible values of Usage and the behavior of
addSentenceDetails and splitSentences when observing abbreviations of these types.
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Usage Behavior Example
Abbreviation

Example Text Detected
Sentences

regular If the next word is
a capitalized
sentence starter,
then break at the
trailing period.
Otherwise, do not
break at the
trailing period.

"appt." "Book an appt.
We'll meet
then."

"Book an
appt."

"We'll meet
then."

"Book an appt.
today."

"Book an appt.
today."

inner Do not break after
trailing period.

"Dr." "Dr. Smith." "Dr. Smith."

reference If the next token is
not a number, then
break at a trailing
period. If the next
token is a number,
then do not break
at the trailing
period.

"fig." "See fig. 3." "See fig. 3."
"Try a fig.
They are
nice."

"Try a fig."

"They are
nice."

unit If the previous
word is a number
and the following
word is a
capitalized
sentence starter,
then break at a
trailing period.

"in." "The height is
30 in. The
width is 10
in."

"The height is
30 in."

"The width is
10 in."

If the previous
word is a number
and the following
word is not
capitalized, then
do not break at a
trailing period.

"The item is
10 in. wide."

"The item is
10 in. wide."

If the previous
word is not a
number, then
break at a trailing
period.

"Come in. Sit
down."

"Come in."

"Sit down."

The Japanese and Korean abbreviation lists are empty because in these languages, abbreviations do
not usually impact sentence detection

See Also
addPartOfSpeechDetails | addSentenceDetails | tokenDetails | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
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“Create Simple Text Model for Classification”
“Language Considerations”

Introduced in R2018a
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addDocument
Add documents to bag-of-words or bag-of-n-grams model

Syntax
newBag = addDocument(bag,documents)

Description
newBag = addDocument(bag,documents) adds documents to the bag-of-words or bag-of-n-grams
model bag.

Examples

Add Documents to Bag-of-Words Model

Create a bag-of-words model from an array of tokenized documents.

documents = tokenizedDocument([
    "an example of a short sentence"
    "a second short sentence"]);
bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [2x7 double]
      Vocabulary: [1x7 string]
        NumWords: 7
    NumDocuments: 2

Create another array of tokenized documents and add it to the same bag-of-words model.

documents = tokenizedDocument([ 
    "a third example of a short sentence" 
    "another short sentence"]);
newBag = addDocument(bag,documents)

newBag = 
  bagOfWords with properties:

          Counts: [4x9 double]
      Vocabulary: [1x9 string]
        NumWords: 9
    NumDocuments: 4
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Import Text from Multiple Files Using a File Datastore

If your text data is contained in multiple files in a folder, then you can import the text data into
MATLAB using a file datastore.

Create a file datastore for the example sonnet text files. The examples sonnets have file names
"exampleSonnetN.txt", where N is the number of the sonnet. Specify the read function to be
extractFileText.

readFcn = @extractFileText;
fds = fileDatastore('exampleSonnet*.txt','ReadFcn',readFcn)

fds = 
  FileDatastore with properties:

                       Files: {
                              ' ...\ib9D0363\0\tp35d6fb40\textanalytics-ex73762432\exampleSonnet1.txt';
                              ' ...\ib9D0363\0\tp35d6fb40\textanalytics-ex73762432\exampleSonnet2.txt';
                              ' ...\ib9D0363\0\tp35d6fb40\textanalytics-ex73762432\exampleSonnet3.txt'
                               ... and 1 more
                              }
                     Folders: {
                              ' ...\Bdoc20a_1326390_8984\ib9D0363\0\tp35d6fb40\textanalytics-ex73762432'
                              }
                 UniformRead: 0
                    ReadMode: 'file'
                   BlockSize: Inf
                  PreviewFcn: @extractFileText
      SupportedOutputFormats: [1x16 string]
                     ReadFcn: @extractFileText
    AlternateFileSystemRoots: {}

Create an empty bag-of-words model.

bag = bagOfWords

bag = 
  bagOfWords with properties:

          Counts: []
      Vocabulary: [1x0 string]
        NumWords: 0
    NumDocuments: 0

Loop over the files in the datastore and read each file. Tokenize the text in each file and add the
document to bag.

while hasdata(fds)
    str = read(fds);
    document = tokenizedDocument(str);
    bag = addDocument(bag,document);
end

View the updated bag-of-words model.

bag
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bag = 
  bagOfWords with properties:

          Counts: [4x276 double]
      Vocabulary: [1x276 string]
        NumWords: 276
    NumDocuments: 4

Input Arguments
bag — Input bag-of-words or bag-of-n-grams model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a bagOfNgrams
object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

Output Arguments
newBag — Output model
bagOfWords object | bagOfNgrams object

Output model, returned as a bagOfWords object or a bagOfNgrams object. The type of newBag is
the same as the type of bag.

See Also
bagOfNgrams | bagOfWords | removeDocument | removeEmptyDocuments |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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addEntityDetails
Add entity tags to documents

Syntax
updatedDocuments = addEntityDetails(documents)
updatedDocuments = addEntityDetails(documents,Name,Value)

Description
Use addEntityDetails to add entity tags to documents.

Use addEntityDetails to detect person names, locations, organizations, and other named entities
in text. This process is known as named entity recognition.

The function supports English, Japanese, German, and Korean text.

updatedDocuments = addEntityDetails(documents) detects the named entities in
documents. The function adds details to the tokens with missing entity details only. To get the entity
details from updatedDocuments, use tokenDetails.

updatedDocuments = addEntityDetails(documents,Name,Value) also specifies additional
options using one or more name-value pairs.

Tip Use addEntityDetails before using the lower, upper, normalizeWords, removeWords,
and removeStopWords functions as addEntityDetails uses information that is removed by these
functions.

Examples

Add Named Entity Tags to Documents

Create a tokenized document array.

str = [
    "Mary moved to Natick, Massachusetts."
    "John uses MATLAB at MathWorks."];
documents = tokenizedDocument(str);

Add the entity details to the documents using the addEntityDetails function. This function detects
the named entities in the text and adds the details to the table returned by the tokenDetails
function. View the updated token details of the first few tokens.

documents = addEntityDetails(documents);
tdetails = tokenDetails(documents)

tdetails=13×8 table
         Token         DocumentNumber    SentenceNumber    LineNumber       Type        Language    PartOfSpeech       Entity   
    _______________    ______________    ______________    __________    ___________    ________    ____________    ____________
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    "Mary"                   1                 1               1         letters           en       proper-noun     person      
    "moved"                  1                 1               1         letters           en       verb            non-entity  
    "to"                     1                 1               1         letters           en       adposition      non-entity  
    "Natick"                 1                 1               1         letters           en       proper-noun     location    
    ","                      1                 1               1         punctuation       en       punctuation     non-entity  
    "Massachusetts"          1                 1               1         letters           en       proper-noun     location    
    "."                      1                 1               1         punctuation       en       punctuation     non-entity  
    "John"                   2                 1               1         letters           en       proper-noun     person      
    "uses"                   2                 1               1         letters           en       verb            non-entity  
    "MATLAB"                 2                 1               1         letters           en       proper-noun     other       
    "at"                     2                 1               1         letters           en       adposition      non-entity  
    "MathWorks"              2                 1               1         letters           en       proper-noun     organization
    "."                      2                 1               1         punctuation       en       punctuation     non-entity  

View the words tagged with the entities "person", "location", "organization", or "other".
These words are the words not tagged with "non-entity".

idx = tdetails.Entity ~= "non-entity";
tdetails.Token(idx)

ans = 6×1 string array
    "Mary"
    "Natick"
    "Massachusetts"
    "John"
    "MATLAB"
    "MathWorks"

Add Named Entity Tags to Japanese Text

Tokenize Japanese text using tokenizedDocument.

str = [
    "マリーさんはボストンからニューヨークに引っ越しました。"
    "駅で鈴木さんに迎えに行きます。"
    "東京は大阪より大きいですか？"
    "東京に行った時、新宿や渋谷などいろいろな所に訪れたました。"];
documents = tokenizedDocument(str);

For Japanese text, the software automatically adds named entity tags, so you do not need to use the
addEntityDetails function. This software detects person names, locations, organizations, and
other named entities. To view the entity details, use the tokenDetails function.

tdetails = tokenDetails(documents);
head(tdetails)

ans=8×8 table
       Token        DocumentNumber    LineNumber     Type      Language    PartOfSpeech       Lemma          Entity  
    ____________    ______________    __________    _______    ________    ____________    ____________    __________

    "マリー"               1               1         letters       ja       proper-noun     "マリー"         person    
    "さん"                1               1         letters       ja       noun            "さん"           person    
    "は"                  1               1         letters       ja       adposition      "は"            non-entity
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    "ボストン"             1               1         letters       ja       proper-noun     "ボストン"        location  
    "から"                1               1         letters       ja       adposition      "から"           non-entity
    "ニューヨーク"          1               1         letters       ja       proper-noun     "ニューヨーク"    location  
    "に"                  1               1         letters       ja       adposition      "に"            non-entity
    "引っ越し"             1               1         letters       ja       verb            "引っ越す"        non-entity

View the words tagged with entity "person", "location", "organization", or "other". These
words are the words not tagged "non-entity".

idx = tdetails.Entity ~= "non-entity";
tdetails(idx,:).Token

ans = 11×1 string array
    "マリー"
    "さん"
    "ボストン"
    "ニューヨーク"
    "鈴木"
    "さん"
    "東京"
    "大阪"
    "東京"
    "新宿"
    "渋谷"

Add Named Entity Tags to German Text

Tokenize German text using tokenizedDocument.

str = [
    "Ernst zog von Frankfurt nach Berlin."
    "Besuchen Sie Volkswagen in Wolfsburg."];
documents = tokenizedDocument(str);

To add entity tags to German text, use the addEntityDetails function. This function detects person
names, locations, organizations, and other named entities.

documents = addEntityDetails(documents);

To view the entity details, use the tokenDetails function.

tdetails = tokenDetails(documents);
head(tdetails)

ans=8×8 table
       Token       DocumentNumber    SentenceNumber    LineNumber       Type        Language    PartOfSpeech      Entity  
    ___________    ______________    ______________    __________    ___________    ________    ____________    __________

    "Ernst"              1                 1               1         letters           de       proper-noun     person    
    "zog"                1                 1               1         letters           de       verb            non-entity
    "von"                1                 1               1         letters           de       adposition      non-entity
    "Frankfurt"          1                 1               1         letters           de       proper-noun     location  
    "nach"               1                 1               1         letters           de       adposition      non-entity
    "Berlin"             1                 1               1         letters           de       proper-noun     location  
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    "."                  1                 1               1         punctuation       de       punctuation     non-entity
    "Besuchen"           2                 1               1         letters           de       verb            non-entity

View the words tagged with entity "person", "location", "organization", or "other". These
words are the words not tagged with "non-entity".

idx = tdetails.Entity ~= "non-entity";
tdetails(idx,:)

ans=5×8 table
       Token        DocumentNumber    SentenceNumber    LineNumber     Type      Language    PartOfSpeech       Entity   
    ____________    ______________    ______________    __________    _______    ________    ____________    ____________

    "Ernst"               1                 1               1         letters       de       proper-noun     person      
    "Frankfurt"           1                 1               1         letters       de       proper-noun     location    
    "Berlin"              1                 1               1         letters       de       proper-noun     location    
    "Volkswagen"          2                 1               1         letters       de       noun            organization
    "Wolfsburg"           2                 1               1         letters       de       proper-noun     location    

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'DiscardKnownValues',true specifies to discard previously computed details and
recompute them.

RetokenizeMethod — Method to retokenize documents
'entity' (default) | 'none'

Method to retokenize documents, specified as one of the following:

• 'entity' – Transform the tokens for named entity recognition. The function merges tokens from
the same entity into a single token.

• 'none' – Do not retokenize the documents.

DiscardKnownValues — Option to discard previously computed details
false (default) | true

Option to discard previously computed details and recompute them, specified as true or false.
Data Types: logical
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Output Arguments
updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the token details from
updatedDocuments, use tokenDetails.

Algorithms
Language Details

tokenizedDocument objects contain details about the tokens including language details. The
language details of the input documents determine the behavior of addEntityDetails. The
tokenizedDocument function, by default, automatically detects the language of the input text. To
specify the language details manually, use the 'Language' name-value pair argument of
tokenizedDocument. To view the token details, use the tokenDetails function.

See Also
abbreviations | addLanguageDetails | addLemmaDetails | addPartOfSpeechDetails |
addSentenceDetails | addTypeDetails | corpusLanguage | splitSentences |
tokenDetails | tokenizedDocument | topLevelDomains

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Language Considerations”
“Japanese Language Support”
“German Language Support”

Introduced in R2019a
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addLanguageDetails
Add language identifiers to documents

Syntax
updatedDocuments = addLanguageDetails(documents)
updatedDocuments = addLanguageDetails(documents,Name,Value)

Description
Use addLanguageDetails to add language identifiers to documents.

The function supports English, Japanese, German, and Korean text.

updatedDocuments = addLanguageDetails(documents) detects the language of documents
and updates the token details. The function adds details to the tokens with missing language details
only. To get the language details from updatedDocuments, use tokenDetails.

updatedDocuments = addLanguageDetails(documents,Name,Value) specifies additional
options using one or more name-value pairs.

Tip Use addLanguageDetails before using the lower and upper functions as
addLanguageDetails uses information that is removed by this functions.

Examples

Add Language Details to Documents

Manually tokenize some text by splitting it into an array of words. Convert the manually tokenized
text into a tokenizedDocument object by setting the 'TokenizeMethod' option to 'none'.

str = split("an example of a short sentence")';
documents = tokenizedDocument(str,'TokenizeMethod','none');

View the token details using tokenDetails.

tdetails = tokenDetails(documents)

tdetails=6×2 table
      Token       DocumentNumber
    __________    ______________

    "an"                1       
    "example"           1       
    "of"                1       
    "a"                 1       
    "short"             1       
    "sentence"          1       
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When you specify 'TokenizeMethod','none', the function does not automatically detect the
language details of the documents. To add the language details, use the addLanguageDetails
function. This function, by default, automatically detects the language.

documents = addLanguageDetails(documents);

View the updated token details using tokenDetails.

tdetails = tokenDetails(documents)

tdetails=6×4 table
      Token       DocumentNumber     Type      Language
    __________    ______________    _______    ________

    "an"                1           letters       en   
    "example"           1           letters       en   
    "of"                1           letters       en   
    "a"                 1           letters       en   
    "short"             1           letters       en   
    "sentence"          1           letters       en   

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'DiscardKnownValues',true specifies to discard previously computed details and
recompute them.

Language — Language
'en' | 'ja' | 'de' | 'ko'

Language, specified as one of the following:

• 'en' – English
• 'ja' – Japanese
• 'de' – German
• 'ko' – Korean

If you do not specify a value, then the function detects the language from the input text using the
corpusLanguage function.

This option specifies the language details of the tokens. To view the language details of the tokens,
use tokenDetails. These language details determine the behavior of the removeStopWords,
addPartOfSpeechDetails, normalizeWords, addSentenceDetails, and addEntityDetails
functions on the tokens.
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For more information about language support in Text Analytics Toolbox, see “Language
Considerations”.

DiscardKnownValues — Option to discard previously computed details
false (default) | true

Option to discard previously computed details and recompute them, specified as true or false.
Data Types: logical

Output Arguments
updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the token details from
updatedDocuments, use tokenDetails.

See Also
abbreviations | addEntityDetails | addEntityDetails | addLemmaDetails |
addPartOfSpeechDetails | addSentenceDetails | addTypeDetails | corpusLanguage |
splitSentences | tokenDetails | tokenizedDocument | topLevelDomains

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Japanese Language Support”
“Language Considerations”
“German Language Support”

Introduced in R2018b
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addLemmaDetails
Add lemma forms of tokens to documents

Syntax
updatedDocuments = addLemmaDetails(documents)
updatedDocuments = addLemmaDetails(documents,'DiscardKnownValues',true)

Description
Use addLemmaDetails to add lemma forms to documents.

The function supports English, Japanese, and Korean text.

updatedDocuments = addLemmaDetails(documents) adds lemma details to documents and
updates the token details. To get the lemma details from updatedDocuments, use tokenDetails.

updatedDocuments = addLemmaDetails(documents,'DiscardKnownValues',true)
discards previously computed details and recomputes them.

Tip Use addLemmaDetails before using the lower, upper, and normalizeWords functions as
addLemmaDetails uses information that is removed by these functions.

Examples

Add Lemma Details to Documents

Create a tokenized document array.

str = [ ...
    "The dogs ran after the cat."
    "I am building a house."];
documents = tokenizedDocument(str);

Add lemma details to the documents using addLemmaDetails. This function lemmatizes the text and
adds the lemma form of each token to the table returned by tokenDetails. View the updated token
details of the first few tokens.

documents = addLemmaDetails(documents);
tdetails = tokenDetails(documents);
head(tdetails)

ans=8×6 table
     Token     DocumentNumber    LineNumber       Type        Language     Lemma 
    _______    ______________    __________    ___________    ________    _______

    "The"            1               1         letters           en       "the"  
    "dogs"           1               1         letters           en       "dog"  
    "ran"            1               1         letters           en       "run"  
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    "after"          1               1         letters           en       "after"
    "the"            1               1         letters           en       "the"  
    "cat"            1               1         letters           en       "cat"  
    "."              1               1         punctuation       en       "."    
    "I"              2               1         letters           en       "i"    

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments
updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the token details from
updatedDocuments, use tokenDetails.

See Also
addEntityDetails | addLanguageDetails | addLemmaDetails | addPartOfSpeechDetails |
addSentenceDetails | addTypeDetails | normalizeWords | tokenDetails |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Language Considerations”

Introduced in R2018b
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addPartOfSpeechDetails
Add part-of-speech tags to documents

Syntax
updatedDocuments = addPartOfSpeechDetails(documents)
updatedDocuments = addPartOfSpeechDetails(documents,Name,Value)

Description
Use addPartOfSpeechDetails to add part-of-speech tags to documents.

The function supports English, Japanese, German, and Korean text.

updatedDocuments = addPartOfSpeechDetails(documents) detects parts of speech in
documents and updates the token details. The function, by default, retokenizes the text for part-of-
speech tagging. For example, the function splits the word "you're" into the tokens "you" and "'re". To
get the part-of-speech details from updatedDocuments, use tokenDetails.

updatedDocuments = addPartOfSpeechDetails(documents,Name,Value) specifies
additional options using one or more name-value pair arguments.

Tip Use addPartOfSpeechDetails before using the lower, upper, erasePunctuation,
normalizeWords, removeWords, and removeStopWords functions as addPartOfSpeechDetails
uses information that is removed by these functions.

Examples

Add Part-of-Speech Details to Documents

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

View the token details of the first few tokens.

tdetails = tokenDetails(documents);
head(tdetails)

ans=8×5 table
       Token       DocumentNumber    LineNumber     Type      Language
    ___________    ______________    __________    _______    ________
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    "fairest"            1               1         letters       en   
    "creatures"          1               1         letters       en   
    "desire"             1               1         letters       en   
    "increase"           1               1         letters       en   
    "thereby"            1               1         letters       en   
    "beautys"            1               1         letters       en   
    "rose"               1               1         letters       en   
    "might"              1               1         letters       en   

Add part-of-speech details to the documents using the addPartOfSpeechDetails function. This
function first adds sentence information to the documents, and then adds the part-of-speech tags to
the table returned by tokenDetails. View the updated token details of the first few tokens.

documents = addPartOfSpeechDetails(documents);
tdetails = tokenDetails(documents);
head(tdetails)

ans=8×7 table
       Token       DocumentNumber    SentenceNumber    LineNumber     Type      Language     PartOfSpeech 
    ___________    ______________    ______________    __________    _______    ________    ______________

    "fairest"            1                 1               1         letters       en       adjective     
    "creatures"          1                 1               1         letters       en       noun          
    "desire"             1                 1               1         letters       en       verb          
    "increase"           1                 1               1         letters       en       noun          
    "thereby"            1                 1               1         letters       en       adverb        
    "beautys"            1                 1               1         letters       en       verb          
    "rose"               1                 1               1         letters       en       noun          
    "might"              1                 1               1         letters       en       auxiliary-verb

Get Part of Speech Details of Japanese Text

Tokenize Japanese text using tokenizedDocument.

str = [
    "恋に悩み、苦しむ。"
    "恋の悩みで 苦しむ。"
    "空に星が輝き、瞬いている。"
    "空の星が輝きを増している。"
    "駅までは遠くて、歩けない。"
    "遠くの駅まで歩けない。"
    "すもももももももものうち。"];
documents = tokenizedDocument(str);

For Japanese text, you can get the part-of-speech details using tokenDetails. For English text, you
must first use addPartOfSpeechDetails.

tdetails = tokenDetails(documents);
head(tdetails)

ans=8×8 table
     Token     DocumentNumber    LineNumber       Type        Language    PartOfSpeech     Lemma       Entity  
    _______    ______________    __________    ___________    ________    ____________    _______    __________
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    "恋"             1               1         letters           ja       noun            "恋"       non-entity
    "に"             1               1         letters           ja       adposition      "に"       non-entity
    "悩み"           1               1         letters           ja       verb            "悩む"      non-entity
    "、"             1               1         punctuation       ja       punctuation     "、"       non-entity
    "苦しむ"          1               1         letters           ja       verb            "苦しむ"    non-entity
    "。"             1               1         punctuation       ja       punctuation     "。"       non-entity
    "恋"             2               1         letters           ja       noun            "恋"       non-entity
    "の"             2               1         letters           ja       adposition      "の"       non-entity

Get Part of Speech Details of German Text

Tokenize German text using tokenizedDocument.

str = [
    "Guten Morgen. Wie geht es dir?"
    "Heute wird ein guter Tag."];
documents = tokenizedDocument(str)

documents = 
  2x1 tokenizedDocument:

    8 tokens: Guten Morgen . Wie geht es dir ?
    6 tokens: Heute wird ein guter Tag .

To get the part of speech details for German text, first use addPartOfSpeechDetails.

documents = addPartOfSpeechDetails(documents);

To view the part of speech details, use the tokenDetails function.

tdetails = tokenDetails(documents);
head(tdetails)

ans=8×7 table
     Token      DocumentNumber    SentenceNumber    LineNumber       Type        Language    PartOfSpeech
    ________    ______________    ______________    __________    ___________    ________    ____________

    "Guten"           1                 1               1         letters           de       adjective   
    "Morgen"          1                 1               1         letters           de       noun        
    "."               1                 1               1         punctuation       de       punctuation 
    "Wie"             1                 2               1         letters           de       adverb      
    "geht"            1                 2               1         letters           de       verb        
    "es"              1                 2               1         letters           de       pronoun     
    "dir"             1                 2               1         letters           de       pronoun     
    "?"               1                 2               1         punctuation       de       punctuation 

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'DiscardKnownValues',true specifies to discard previously computed details and
recompute them.

RetokenizeMethod — Method to retokenize documents
'part-of-speech' (default) | 'none'

Method to retokenize documents, specified as one of the following:

• 'part-of-speech' – Transform the tokens for part-of-speech tagging. The function performs
these tasks:

• Split compound words. For example, split the compound word "wanna" into the tokens
"want" and "to". This includes compound words containing apostrophes. For example, the
function splits the word "don't" into the tokens "do" and "n't".

• Merge periods with preceding abbreviations. For example, merge the tokens "Mr" and "."
into the token "Mr.".

• Merge runs of periods into ellipses. For example, merge three instances of "." into the single
token "...".

• 'none' – Do not retokenize the documents.

DiscardKnownValues — Option to discard previously computed details
false (default) | true

Option to discard previously computed details and recompute them, specified as true or false.
Data Types: logical

Output Arguments
updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the token details from
updatedDocuments, use tokenDetails.

Algorithms
If the input documents do not contain sentence details, then the function first runs
addSentenceDetails.

See Also
addEntityDetails | addLanguageDetails | addLemmaDetails | addSentenceDetails |
addTypeDetails | normalizeWords | tokenDetails | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
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“Create Simple Text Model for Classification”
“Language Considerations”
“Japanese Language Support”
“German Language Support”

Introduced in R2018b
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addSentenceDetails
Add sentence numbers to documents

Syntax
updatedDocuments = addSentenceDetails(documents)
updatedDocuments = addSentenceDetails(documents,Name,Value)

Description
Use addSentenceDetails to add sentence information to documents.

The function supports English, Japanese, German, and Korean text.

updatedDocuments = addSentenceDetails(documents) detects the sentence boundaries in
documents and updates the token details. To get the sentence details from updatedDocuments, use
tokenDetails.

updatedDocuments = addSentenceDetails(documents,Name,Value) specifies additional
options using one or more name-value pair arguments.

Tip Use addSentenceDetails before using the lower, upper, erasePunctuation,
normalizeWords, removeWords, and removeStopWords functions as addSentenceDetails uses
information that is removed by these functions.

Examples

Add Sentence Details to Documents

Create a tokenized document array.

str = [ ...
    "This is an example document. It has two sentences."
    "This document has one sentence."
    "Here is another example document. It also has two sentences."];
documents = tokenizedDocument(str);

Add sentence details to the documents using addSentenceDetails. This function adds the sentence
numbers to the table returned by tokenDetails. View the updated token details of the first few
tokens.

documents = addSentenceDetails(documents);
tdetails = tokenDetails(documents);
head(tdetails)

ans=8×6 table
      Token       DocumentNumber    SentenceNumber    LineNumber       Type        Language
    __________    ______________    ______________    __________    ___________    ________
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    "This"              1                 1               1         letters           en   
    "is"                1                 1               1         letters           en   
    "an"                1                 1               1         letters           en   
    "example"           1                 1               1         letters           en   
    "document"          1                 1               1         letters           en   
    "."                 1                 1               1         punctuation       en   
    "It"                1                 2               1         letters           en   
    "has"               1                 2               1         letters           en   

View the token details of the second sentence of the third document.

idx = tdetails.DocumentNumber == 3 & ...
    tdetails.SentenceNumber == 2;
tdetails(idx,:)

ans=6×6 table
       Token       DocumentNumber    SentenceNumber    LineNumber       Type        Language
    ___________    ______________    ______________    __________    ___________    ________

    "It"                 3                 2               1         letters           en   
    "also"               3                 2               1         letters           en   
    "has"                3                 2               1         letters           en   
    "two"                3                 2               1         letters           en   
    "sentences"          3                 2               1         letters           en   
    "."                  3                 2               1         punctuation       en   

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Abbreviations',["cm" "mm" "in"] specifies to detect sentences boundaries where
these abbreviations are followed by a period and a capitalized sentence starter.

Abbreviations — List of abbreviations
string array | character vector | cell array of character vectors | table

List of abbreviations, specified as a string array, character vector, cell array of character vectors, or a
table.

If Abbreviations is a string array, character vector, or cell array of character vectors, then the
function treats these as regular abbreviations. If the next word is a capitalized sentence starter, then
the function breaks at the trailing period. The function ignores any differences in the letter case of
the abbreviations. Specify the sentence starters using the Starters name-value pair.

To specify different behaviors when splitting sentences at abbreviations, specify Abbreviations as
a table. The table must have variables named Abbreviation and Usage, where Abbreviation
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contains the abbreviations, and Usage contains the type of each abbreviation. The following table
describes the possible values of Usage, and the behavior of the function when passed abbreviations
of these types.

Usage Behavior Example
Abbreviation

Example Text Detected
Sentences

regular If the next word is
a capitalized
sentence starter,
then break at the
trailing period.
Otherwise, do not
break at the
trailing period.

"appt." "Book an appt.
We'll meet
then."

"Book an
appt."

"We'll meet
then."

"Book an appt.
today."

"Book an appt.
today."

inner Do not break after
trailing period.

"Dr." "Dr. Smith." "Dr. Smith."

reference If the next token is
not a number, then
break at a trailing
period. If the next
token is a number,
then do not break
at the trailing
period.

"fig." "See fig. 3." "See fig. 3."
"Try a fig.
They are
nice."

"Try a fig."

"They are
nice."

unit If the previous
word is a number
and the following
word is a
capitalized
sentence starter,
then break at a
trailing period.

"in." "The height is
30 in. The
width is 10
in."

"The height is
30 in."

"The width is
10 in."

If the previous
word is a number
and the following
word is not
capitalized, then
do not break at a
trailing period.

"The item is
10 in. wide."

"The item is
10 in. wide."

If the previous
word is not a
number, then
break at a trailing
period.

"Come in. Sit
down."

"Come in."

"Sit down."

The default value is the output of the abbreviations function.
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Tip By default, the function treats single letter abbreviations, such as "V.", or tokens with mixed
single letters and periods, such as "U.S.A." as regular abbreviations. You do not need to include these
abbreviations in Abbreviations.

Example: ["cm" "mm" "in"]
Data Types: char | string | table | cell

Starters — Words that start a sentence
string array | character vector | cell array of character vectors

Words that start a sentence, specified as a string array, character vector, or a cell array of character
vectors. If a sentence starter appears capitalized after a regular abbreviation, then the function
detects a sentence boundary at the trailing period. The function ignores any differences in the letter
case of the sentence starters.

The default value is the output of the stopWords function.
Data Types: char | string | cell

DiscardKnownValues — Option to discard previously computed details
false (default) | true

Option to discard previously computed details and recompute them, specified as true or false.
Data Types: logical

Output Arguments
updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the token details from
updatedDocuments, use tokenDetails.

More About
Language Considerations

The addSentenceDetails function detects sentence boundaries based on punctuation characters
and line number information. For English and German text, the function also uses a list of
abbreviations passed to the function.

For other languages, you might need to specify your own list of abbreviations for sentence detection.
To do this, use the 'Abbreviations' option of addSentenceDetails.

Algorithms
If emoticons or emoji characters appear after a terminating punctuation character, then the function
splits the sentence after the emoticons and emoji.
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See Also
abbreviations | addEntityDetails | addLanguageDetails | addLemmaDetails |
addPartOfSpeechDetails | addTypeDetails | splitSentences | tokenDetails |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Language Considerations”

Introduced in R2018a
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addTypeDetails
Add token type details to documents

Syntax
updatedDocuments = addTypeDetails(documents)
updatedDocuments = addTypeDetails(documents,Name,Value)

Description
updatedDocuments = addTypeDetails(documents) detects the token types in documents and
updates the token details. The function adds type details to the tokens with unknown type only. To get
the token types from updatedDocuments, use tokenDetails.

updatedDocuments = addTypeDetails(documents,Name,Value) specifies additional options
using one or more name-value pairs.

Tip Use addTypeDetails before using the lower, upper, and erasePunctuation functions as
addTypeDetails uses information that is removed by these functions.

Examples

Add Token Type Details to Documents

Convert manually tokenized text into a tokenizedDocument object, setting the 'TokenizeMethod'
option to 'none'.

str = ["For" "more" "information" "," "see" "https://www.mathworks.com" "."];
documents = tokenizedDocument(str,'TokenizeMethod','none')

documents = 
  tokenizedDocument:

   7 tokens: For more information , see https://www.mathworks.com .

View the token details using the tokenDetails function.

tdetails = tokenDetails(documents)

tdetails=7×2 table
               Token               DocumentNumber
    ___________________________    ______________

    "For"                                1       
    "more"                               1       
    "information"                        1       
    ","                                  1       
    "see"                                1       
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    "https://www.mathworks.com"          1       
    "."                                  1       

If you set 'TokenizeMethod' to 'none' in the call to the tokenizedDocument function, then it
does not detect the types of the tokens. To add the token type details, use the addTypeDetails
function.

documents = addTypeDetails(documents);

View the updated token details.

tdetails = tokenDetails(documents)

tdetails=7×3 table
               Token               DocumentNumber       Type    
    ___________________________    ______________    ___________

    "For"                                1           letters    
    "more"                               1           letters    
    "information"                        1           letters    
    ","                                  1           punctuation
    "see"                                1           letters    
    "https://www.mathworks.com"          1           web-address
    "."                                  1           punctuation

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'TopLevelDomains',["com" "net" "org"] specifies the top-level domains "com",
"net", and "org" for web address detection.

TopLevelDomains — Top-level domains
character vector | string array | cell array of character vectors

Top-level domains to use for web address detection, specified as a character vector, string array, or
cell array of character vectors.

If you do not specify TopLevelDomains, then the function uses the output of the topLevelDomains
function.
Example: ["com" "net" "org"]
Data Types: char | string | cell
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DiscardKnownValues — Option to discard previously computed details
false (default) | true

Option to discard previously computed details and recompute them, specified as true or false.
Data Types: logical

Output Arguments
updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the token details from
updatedDocuments, use tokenDetails.

See Also
abbreviations | addEntityDetails | addLanguageDetails | addLemmaDetails |
addPartOfSpeechDetails | addSentenceDetails | corpusLanguage | splitSentences |
tokenDetails | tokenizedDocument | topLevelDomains

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”

Introduced in R2018b
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bagOfNgrams
Bag-of-n-grams model

Description
A bag-of-n-grams model records the number of times that each n-gram appears in each document of a
collection. An n-gram is a collection of n successive words.

bagOfNgrams does not split text into words. To create an array of tokenized documents, see
tokenizedDocument.

Creation
Syntax
bag = bagOfNgrams
bag = bagOfNgrams(documents)
bag = bagOfNgrams( ___ ,'NgramLengths',lengths)
bag = bagOfNgrams(uniqueNgrams,counts)

Description

bag = bagOfNgrams creates an empty bag-of-n-grams model.

bag = bagOfNgrams(documents) creates a bag-of-n-grams model and counts the bigrams (pairs of
words) in documents.

bag = bagOfNgrams( ___ ,'NgramLengths',lengths) counts n-grams of the specified lengths
using any of the previous syntaxes.

bag = bagOfNgrams(uniqueNgrams,counts) creates a bag-of-n-grams model using the n-grams
in uniqueNgrams and the corresponding frequency counts in counts. If uniqueNgrams contains
<missing> values, then the corresponding values in counts are ignored.

Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

uniqueNgrams — Unique n-gram list
string array | cell array of character vectors

Unique n-gram list, specified as a NumNgrams-by-maxN string array or cell array of character vectors,
where NumNgrams is the number of unique n-grams, and maxN is the length of the largest n-gram.
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The value of uniqueNgrams(i,j) is the jth word of the ith n-gram. If the number of words in the
ith n-gram is less than maxN, then the remaining entries of the ith row of uniqueNgrams are empty.

If uniqueNgrams contains <missing>, then the function ignores the corresponding values in
counts.

Each n-gram must have at least one word.
Example: ["An" ""; "An" "example"; "example" ""]
Data Types: string | cell

counts — Frequency counts of n-grams
matrix of nonnegative integers

Frequency counts of n-grams corresponding to the rows of uniqueNgrams, specified as a matrix of
nonnegative integers. The value counts(i,j) corresponds to the number of times the n-gram
uniqueNgrams(j,:) appears in the ith document.

counts must have as many columns as uniqueNgrams has rows.

lengths — Lengths of n-grams
2 (default) | positive integer | vector of positive integers

Lengths of n-grams, specified as a positive integer or a vector of positive integers.

Properties
Counts — N-gram counts per document
sparse matrix

N-gram counts per document, specified as a sparse matrix.

Ngrams — Unique n-grams in model
string array

Unique n-grams in the model, specified as a string array. Ngrams(i,j) is the jth word of the ith n-
gram. If the number of columns of Ngrams is greater than the number of words in the n-gram, then
the remaining entries are empty.

NgramLengths — Lengths of n-grams
2 (default) | positive integer | vector of positive integers

Lengths of n-grams, specified as a positive integer or a vector of positive integers.

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.
Data Types: string

NumNgrams — Number of n-grams seen
nonnegative integer

Number of n-grams seen, specified as a nonnegative integer.
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NumDocuments — Number of documents seen
nonnegative integer

Number of documents seen, specified as a nonnegative integer.

Object Functions
encode Encode documents as matrix of word or n-gram counts
tfidf Term Frequency–Inverse Document Frequency (tf-idf) matrix
topkngrams Most frequent n-grams
addDocument Add documents to bag-of-words or bag-of-n-grams model
removeDocument Remove documents from bag-of-words or bag-of-n-grams model
removeEmptyDocuments Remove empty documents from tokenized document array, bag-of-words

model, or bag-of-n-grams model
removeNgrams Remove n-grams from bag-of-n-grams model
removeInfrequentNgrams Remove infrequently seen n-grams from bag-of-n-grams model
join Combine multiple bag-of-words or bag-of-n-grams models
wordcloud Create word cloud chart from text, bag-of-words model, bag-of-n-grams

model, or LDA model

Examples

Create Bag-of-N-Grams Model

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);
documents(1:10)

ans = 
  10x1 tokenizedDocument:

    70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
    71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
    65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
    71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
    61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet
    68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
    64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
    70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
    70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
    69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Create a bag-of-n-grams model.

bag = bagOfNgrams(documents)

bag = 
  bagOfNgrams with properties:
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          Counts: [154x8799 double]
      Vocabulary: [1x3092 string]
          Ngrams: [8799x2 string]
    NgramLengths: 2
       NumNgrams: 8799
    NumDocuments: 154

Visualize the model using a word cloud.

figure 
wordcloud(bag);

Count N-Grams of Different Lengths

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);
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Create a bag-of-n-grams model. To count n-grams of length 2 and 3 (bigrams and trigrams), specify
'NgramLengths' to be the vector [2 3].

bag = bagOfNgrams(documents,'NgramLengths',[2 3])

bag = 
  bagOfNgrams with properties:

          Counts: [154×18022 double]
      Vocabulary: [1×3092 string]
          Ngrams: [18022×3 string]
    NgramLengths: [2 3]
       NumNgrams: 18022
    NumDocuments: 154

View the 10 most common n-grams of length 2 (bigrams).

topkngrams(bag,10,'NGramLengths',2)

ans=10×3 table
             Ngram             Count    NgramLength
    _______________________    _____    ___________

    "thou"    "art"      ""     34           2     
    "mine"    "eye"      ""     15           2     
    "thy"     "self"     ""     14           2     
    "thou"    "dost"     ""     13           2     
    "mine"    "own"      ""     13           2     
    "thy"     "sweet"    ""     12           2     
    "thy"     "love"     ""     11           2     
    "dost"    "thou"     ""     10           2     
    "thou"    "wilt"     ""     10           2     
    "love"    "thee"     ""      9           2     

View the 10 most common n-grams of length 3 (trigrams).

 topkngrams(bag,10,'NGramLengths',3)

ans=10×3 table
               Ngram                Count    NgramLength
    ____________________________    _____    ___________

    "thy"     "sweet"    "self"       4           3     
    "why"     "dost"     "thou"       4           3     
    "thy"     "self"     "thy"        3           3     
    "thou"    "thy"      "self"       3           3     
    "mine"    "eye"      "heart"      3           3     
    "thou"    "shalt"    "find"       3           3     
    "fair"    "kind"     "true"       3           3     
    "thou"    "art"      "fair"       2           3     
    "love"    "thy"      "self"       2           3     
    "thy"     "self"     "thou"       2           3     
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Create Bag-of-N-Grams Model from Unique N-Grams and Counts

Create a bag-of-n-grams model using a string array of unique n-grams and a matrix of counts.

Load the example n-grams and counts from sonnetsBigramCounts.mat. This file contains a string
array uniqueNgrams, which contains the unique n-grams, and the matrix counts, which contains
the n-gram frequency counts.

load sonnetsBigramCounts.mat

View the first few n-grams in uniqueNgrams.

uniqueNgrams(1:10,:)

ans = 10x2 string
    "fairest"      "creatures"
    "creatures"    "desire"   
    "desire"       "increase" 
    "increase"     "thereby"  
    "thereby"      "beautys"  
    "beautys"      "rose"     
    "rose"         "might"    
    "might"        "never"    
    "never"        "die"      
    "die"          "riper"    

Create the bag-of-n-grams model.

bag = bagOfNgrams(uniqueNgrams,counts)

bag = 
  bagOfNgrams with properties:

          Counts: [154x8799 double]
      Vocabulary: [1x3092 string]
          Ngrams: [8799x2 string]
    NgramLengths: 2
       NumNgrams: 8799
    NumDocuments: 154

See Also
addDocument | bagOfWords | encode | removeDocument | removeEmptyDocuments |
removeInfrequentNgrams | removeNgrams | tfidf | tokenizedDocument | topkngrams

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2018a
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bagOfWords
Bag-of-words model

Description
A bag-of-words model (also known as a term-frequency counter) records the number of times that
words appear in each document of a collection.

bagOfWords does not split text into words. To create an array of tokenized documents, see
tokenizedDocument.

Creation

Syntax
bag = bagOfWords
bag = bagOfWords(documents)
bag = bagOfWords(uniqueWords,counts)

Description

bag = bagOfWords creates an empty bag-of-words model.

bag = bagOfWords(documents) counts the words appearing in documents and returns a bag-of-
words model.

bag = bagOfWords(uniqueWords,counts) creates a bag-of-words model using the words in
uniqueWords and the corresponding frequency counts in counts.

Input Arguments

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

uniqueWords — Unique word list
string vector | cell array of character vectors

Unique word list, specified as a string vector or a cell array of character vectors. If uniqueWords
contains <missing>, then the function ignores the missing values. The size of uniqueWords must be
1-by-V where V is the number of columns of counts.
Example: ["an" "example" "list"]
Data Types: string | cell
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counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words corresponding to uniqueWords, specified as a matrix of nonnegative
integers. The value counts(i,j) corresponds to the number of times the word uniqueWords(j)
appears in the ith document.

counts must have numel(uniqueWords) columns.

Properties
Counts — Word counts per document
sparse matrix

Word counts per document, specified as a sparse matrix.

NumDocuments — Number of documents seen
nonnegative integer

Number of documents seen, specified as a nonnegative integer.

NumWords — Number of words in model
nonnegative integer

Number of words in the model, specified as a nonnegative integer.

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.
Data Types: string

Object Functions
encode Encode documents as matrix of word or n-gram counts
tfidf Term Frequency–Inverse Document Frequency (tf-idf) matrix
topkwords Most important words in bag-of-words model or LDA topic
addDocument Add documents to bag-of-words or bag-of-n-grams model
removeDocument Remove documents from bag-of-words or bag-of-n-grams model
removeEmptyDocuments Remove empty documents from tokenized document array, bag-of-words

model, or bag-of-n-grams model
removeWords Remove selected words from documents or bag-of-words model
removeInfrequentWords Remove words with low counts from bag-of-words model
join Combine multiple bag-of-words or bag-of-n-grams models
wordcloud Create word cloud chart from text, bag-of-words model, bag-of-n-grams

model, or LDA model

Examples

Create Bag-of-Words Model

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
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Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154

View the top 10 words and their total counts.

tbl = topkwords(bag,10)

tbl=10×2 table
     Word      Count
    _______    _____

    "thy"       281 
    "thou"      234 
    "love"      162 
    "thee"      161 
    "doth"       88 
    "mine"       63 
    "shall"      59 
    "eyes"       56 
    "sweet"      55 
    "time"       53 

Create Bag-of-Words Model from Unique Words and Counts

Create a bag-of-words model using a string array of unique words and a matrix of word counts.

uniqueWords = ["a" "an" "another" "example" "final" "sentence" "third"];
counts = [ ...
    1 2 0 1 0 1 0;
    0 0 3 1 0 4 0;
    1 0 0 5 0 3 1;
    1 0 0 1 7 0 0];
bag = bagOfWords(uniqueWords,counts)

bag = 
  bagOfWords with properties:
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          Counts: [4x7 double]
      Vocabulary: [1x7 string]
        NumWords: 7
    NumDocuments: 4

Import Text from Multiple Files Using a File Datastore

If your text data is contained in multiple files in a folder, then you can import the text data into
MATLAB using a file datastore.

Create a file datastore for the example sonnet text files. The examples sonnets have file names
"exampleSonnetN.txt", where N is the number of the sonnet. Specify the read function to be
extractFileText.

readFcn = @extractFileText;
fds = fileDatastore('exampleSonnet*.txt','ReadFcn',readFcn)

fds = 
  FileDatastore with properties:

                       Files: {
                              ' ...\ib9D0363\0\tp35d6fb40\textanalytics-ex73762432\exampleSonnet1.txt';
                              ' ...\ib9D0363\0\tp35d6fb40\textanalytics-ex73762432\exampleSonnet2.txt';
                              ' ...\ib9D0363\0\tp35d6fb40\textanalytics-ex73762432\exampleSonnet3.txt'
                               ... and 1 more
                              }
                     Folders: {
                              ' ...\Bdoc20a_1326390_8984\ib9D0363\0\tp35d6fb40\textanalytics-ex73762432'
                              }
                 UniformRead: 0
                    ReadMode: 'file'
                   BlockSize: Inf
                  PreviewFcn: @extractFileText
      SupportedOutputFormats: [1x16 string]
                     ReadFcn: @extractFileText
    AlternateFileSystemRoots: {}

Create an empty bag-of-words model.

bag = bagOfWords

bag = 
  bagOfWords with properties:

          Counts: []
      Vocabulary: [1x0 string]
        NumWords: 0
    NumDocuments: 0

Loop over the files in the datastore and read each file. Tokenize the text in each file and add the
document to bag.
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while hasdata(fds)
    str = read(fds);
    document = tokenizedDocument(str);
    bag = addDocument(bag,document);
end

View the updated bag-of-words model.

bag

bag = 
  bagOfWords with properties:

          Counts: [4x276 double]
      Vocabulary: [1x276 string]
        NumWords: 276
    NumDocuments: 4

Remove Stop Words from Bag-of-Words Model

Remove the stop words from a bag-of-words model by inputting a list of stop words to removeWords.
Stop words are words such as "a", "the", and "in" which are commonly removed from text before
analysis.

documents = tokenizedDocument([
    "an example of a short sentence" 
    "a second short sentence"]);
bag = bagOfWords(documents);
newBag = removeWords(bag,stopWords)

newBag = 
  bagOfWords with properties:

          Counts: [2x4 double]
      Vocabulary: ["example"    "short"    "sentence"    "second"]
        NumWords: 4
    NumDocuments: 2

Most Frequent Words of Bag-of-Words Model

Create a table of the most frequent words of a bag-of-words model.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);
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Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents) 

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154

Find the top five words.

T = topkwords(bag);

Find the top 20 words in the model.

k = 20;
T = topkwords(bag,k)

T=20×2 table
      Word      Count
    ________    _____

    "thy"        281 
    "thou"       234 
    "love"       162 
    "thee"       161 
    "doth"        88 
    "mine"        63 
    "shall"       59 
    "eyes"        56 
    "sweet"       55 
    "time"        53 
    "beauty"      52 
    "nor"         52 
    "art"         51 
    "yet"         51 
    "o"           50 
    "heart"       50 
      ⋮

Create Tf-idf Matrix

Create a Term Frequency–Inverse Document Frequency (tf-idf) matrix from a bag-of-words model.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
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textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154

Create a tf-idf matrix. View the first 10 rows and columns.

M = tfidf(bag);
full(M(1:10,1:10))

ans = 10×10

    3.6507    4.3438    2.7344    3.6507    4.3438    2.2644    3.2452    3.8918    2.4720    2.5520
         0         0         0         0         0    4.5287         0         0         0         0
         0         0         0         0         0         0         0         0         0    2.5520
         0         0         0         0         0    2.2644         0         0         0         0
         0         0         0         0         0    2.2644         0         0         0         0
         0         0         0         0         0    2.2644         0         0         0         0
         0         0         0         0         0         0         0         0         0         0
         0         0         0         0         0         0         0         0         0         0
         0         0         0         0         0    2.2644         0         0         0    2.5520
         0         0    2.7344         0         0         0         0         0         0         0

Create Word Cloud from Bag-of-Words Model

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
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    NumDocuments: 154

Visualize the bag-of-words model using a word cloud.

figure
wordcloud(bag);

Create Bag-of-Words Model in Parallel

If your text data is contained in multiple files in a folder, then you can import the text data and create
a bag-of-words model in parallel using parfor. If you have Parallel Computing Toolbox™ installed,
then the parfor loop runs in parallel, otherwise, it runs in serial. Use join to combine an array of
bag-of-words models into one model.

Create a bag-of-words model from a collection of files. The examples sonnets have file names
"exampleSonnetN.txt", where N is the number of the sonnet. Get a list of the files and their
locations using dir.

fileLocation = fullfile(matlabroot,'examples','textanalytics','exampleSonnet*.txt');
fileInfo = dir(fileLocation)

fileInfo = 

  0x1 empty struct array with fields:

    name
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    folder
    date
    bytes
    isdir
    datenum

Initialize an empty bag-of-words model and then loop over the files and create an array of bag-of-
words models.

bag = bagOfWords;

numFiles = numel(fileInfo);
parfor i = 1:numFiles
    f = fileInfo(i);
    filename = fullfile(f.folder,f.name);
    
    textData = extractFileText(filename);
    document = tokenizedDocument(textData);
    bag(i) = bagOfWords(document);
end

Combine the bag-of-words models using join.

bag = join(bag)

bag = 
  bagOfWords with properties:

          Counts: []
      Vocabulary: [1x0 string]
        NumWords: 0
    NumDocuments: 0

Tips
• If you intend to use a held out test set for your work, then partition your text data before using

bagOfWords. Otherwise, the bag-of-words model may bias your analysis.

See Also
addDocument | bagOfNgrams | encode | removeDocument | removeEmptyDocuments |
removeInfrequentWords | removeWords | tfidf | tokenizedDocument | topkwords

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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bleuEvaluationScore
Evaluate translation or summarization with BLEU similarity score

Syntax
score = bleuEvaluationScore(candidate,references)
score = bleuEvaluationScore(candidate,references,'NGramWeights',ngramWeights)

Description
The BiLingual Evaluation Understudy (BLEU) scoring algorithm evaluates the similarity between a
candidate document and a collection of reference documents. Use the BLEU score to evaluate the
quality of document translation and summarization models.

score = bleuEvaluationScore(candidate,references) returns the BLEU similarity score
between the specified candidate document and the reference documents. The function computes n-
gram overlaps between candidate and references for n-gram lengths one through four, with
equal weighting. For more information, see “BLEU Score” on page 1-50.

score = bleuEvaluationScore(candidate,references,'NGramWeights',ngramWeights)
uses the specified n-gram weighting, where ngramWeights(i) corresponds to the weight for n-
grams of length i. The length of the weight vector determines the range of n-gram lengths to use for
the BLEU score evaluation.

Examples

Evaluate Summary

Create an array of tokenized documents and extract a summary using the extractSummary function.

str = [
    "The fox jumped over the dog."
    "The fast brown fox jumped over the lazy dog."
    "The lazy dog saw a fox jumping."
    "There seem to be animals jumping other animals."
    "There are quick animals and lazy animals"];
documents = tokenizedDocument(str);
summary = extractSummary(documents)

summary = 
  tokenizedDocument:

   10 tokens: The fast brown fox jumped over the lazy dog .

Specify the reference documents as a tokenizedDocument array.

str = [
    "The quick brown animal jumped over the lazy dog."
    "The quick brown fox jumped over the lazy dog."];
references = tokenizedDocument(str);

 bleuEvaluationScore

1-47



Calculate the BLEU score between the summary and the reference documents using the
bleuEvaluationScore function.

score = bleuEvaluationScore(summary,references)

score = 0.7825

This score indicates a fairly good similarity. A BLEU score close to one indicates strong similarity.

Specify N-Gram Weights

Create an array of tokenized documents and extract a summary using the extractSummary function.

str = [
    "The fox jumped over the dog."
    "The fast brown fox jumped over the lazy dog."
    "The lazy dog saw a fox jumping."
    "There seem to be animals jumping other animals."
    "There are quick animals and lazy animals"];
documents = tokenizedDocument(str);
summary = extractSummary(documents)

summary = 
  tokenizedDocument:

   10 tokens: The fast brown fox jumped over the lazy dog .

Specify the reference documents as a tokenizedDocument array.

str = [
    "The quick brown animal jumped over the lazy dog."
    "The quick brown fox jumped over the lazy dog."];
references = tokenizedDocument(str);

Calculate the BLEU score between the candidate document and the reference documents using the
default options. The bleuEvaluationScore function, by default, uses n-grams of length one
through four with equal weights.

score = bleuEvaluationScore(summary,references)

score = 0.7825

Given that the summary document differs only by one word to one of the reference documents, this
score might suggest a lower similarity than might be expected. This behavior is due to the function
using n-grams which are too large for the short document length.

To address this, use shorter n-grams by setting the 'NgramWeights' option to a shorter vector.
Calculate the BLEU score again using only unigrams and bigrams by setting the 'NgramWeights'
option to a two-element vector. Treat unigrams and bigrams equally by specifying equal weights.

score = bleuEvaluationScore(summary,references,'NGramWeights',[0.5 0.5])

score = 0.8367

This score suggests a better similarity than before.
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Input Arguments
candidate — Candidate document
tokenizedDocument scalar | string array | cell array of character vectors

Candidate document, specified as a tokenizedDocument scalar, a string array, or a cell array of
character vectors. If candidate is not a tokenizedDocument scalar, then it must be a row vector
representing a single document, where each element is a word.

references — Reference documents
tokenizedDocument array | string array | cell array of character vectors

Reference documents, specified as a tokenizedDocument array, a string array, or a cell array of
character vectors. If references is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To evaluate against multiple
reference documents, use a tokenizedDocument array.

ngramWeights — N-gram weights
[0.25 0.25 0.25 0.25] (default) | row vector of finite nonnegative values

N-gram weights, specified as a row vector of finite nonnegative values, where ngramWeights(i)
corresponds to the weight for n-grams of length i. The length of the weight vector determines the
range of n-gram lengths to use for the BLEU score evaluation. The function normalizes the n-gram
weights to sum to one.

Tip If the number of words in candidate is smaller than the number of elements in ngramWeights,
then the resulting BLEU score is zero. To ensure that bleuEvaluationScore returns nonzero
scores for very short documents, set ngramWeights to a vector with fewer elements than the
number of words in candidate.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
score — BLEU score
scalar

BLEU score, returned as a scalar value in the range [0,1] or NaN.

A BLEU score close to zero indicates poor similarity between candidate and references. A BLEU
score close to one indicates strong similarity. If candidate is identical to one of the reference
documents, then score is 1. If candidate and references are both empty documents, then score
is NaN. For more information, see “BLEU Score” on page 1-50.

Tip If the number of words in candidate is smaller than the number of elements in ngramWeights,
then the resulting BLEU score is zero. To ensure that bleuEvaluationScore returns nonzero
scores for very short documents, set ngramWeights to a vector with fewer elements than the
number of words in candidate.

 bleuEvaluationScore

1-49



Algorithms
BLEU Score

The BiLingual Evaluation Understudy (BLEU) scoring algorithm [1] evaluates the similarity between a
candidate document and a collection of reference documents. Use the BLEU score to evaluate the
quality of document translation and summarization models.

To compute the BLEU score, the algorithm uses n-gram counts, clipped n-gram counts, modified n-
gram precision scores, and a brevity penalty.

The clipped n-gram counts function Countclip, if necessary, truncates the n-gram count for each n-
gram so that it does not exceed the largest count observed in any single reference for that n-gram.
The clipped counts function is given by

Countclip(n‐gram) = min(Count(n‐gram), MaxRefCount(n‐gram)),

where Count(n‐gram) denotes the n-gram counts and MaxRefCount(n‐gram) is the largest n-gram
count observed in a single reference document for that n-gram.

The modified n-gram precision scores are given by

pn =
∑

C ∈ Candidates
∑

n‐gram ∈ C
Countclip(n‐gram)

∑
C′ ∈ Candidates

∑
n‐gram′ ∈ C′

Count(n‐gram′)
,

where n corresponds to the n-gram length and candidates  is the set of sentences in the candidate
documents.

Given a vector of n-gram weights w, the BLEU score is given by

bleuScore = BP · exp ∑
n = 1

N
wnlogpn ,

where N is the largest n-gram length, the entries in p correspond to the geometric averages of the
modified n-gram precisions, and BP is the brevity penalty given by

BP =
1 if c > r

e1− r
c if c ≤ r

where c is the length of the candidate document and r is the length of the reference document with
length closest to the candidate length.

References
[1] Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. "BLEU: A Method for Automatic

Evaluation of Machine Translation." In Proceedings of the 40th annual meeting on association
for computational linguistics, pp. 311-318. Association for Computational Linguistics, 2002.

See Also
bm25Similarity | cosineSimilarity | extractSummary | lexrankScores | mmrScores |
rougeEvaluationScore | textrankScores | tokenizedDocument
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Topics
“Sequence-to-Sequence Translation Using Attention”

Introduced in R2020a
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bm25Similarity
Document similarities with BM25 algorithm

Syntax
similarities = bm25Similarity(documents)
similarities = bm25Similarity(documents,queries)

similarities = bm25Similarity(bag)
similarities = bm25Similarity(bag,queries)

similarities = bm25Similarity( ___ ,Name,Value)

Description
Use bm25Similarity to calculate document similarities.

By default, this function calculates BM25 similarities. To calculate BM11, BM15, or BM25+
similarities, use the 'DocumentLengthScaling' and 'DocumentLengthCorrection' arguments.

similarities = bm25Similarity(documents) returns the pairwise BM25 similarities between
the specified documents. The score in similarities(i,j) represents the similarity between
documents(i) and documents(j).

similarities = bm25Similarity(documents,queries) returns similarities between
documents and queries. The score in similarities(i,j) represents the similarity between
documents(i) and queries(j).

similarities = bm25Similarity(bag) returns similarities between the documents encoded by
the specified bag-of-words or bag-of-n-grams model. The score in similarities(i,j) represents
the similarity between the ith and jth documents encoded by bag.

similarities = bm25Similarity(bag,queries) returns similarities between the documents
encoded by the bag-of-words or bag-of-n-grams model bag and the documents specified by queries.
The score in similarities(i,j) represents the similarity between the ith document encoded by
bag and queries(j).

similarities = bm25Similarity( ___ ,Name,Value) specifies additional options using one or
more name-value pair arguments. For instance, to use the BM25+ algorithm, set the
'DocumentLengthCorrection' option to a nonzero value.

Examples

Similarity Between Documents

Create an array of tokenized documents.

textData = [
    "the quick brown fox jumped over the lazy dog"
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    "the fast brown fox jumped over the lazy dog"
    "the lazy dog sat there and did nothing"
    "the other animals sat there watching"];
documents = tokenizedDocument(textData)

documents = 
  4x1 tokenizedDocument:

    9 tokens: the quick brown fox jumped over the lazy dog
    9 tokens: the fast brown fox jumped over the lazy dog
    8 tokens: the lazy dog sat there and did nothing
    6 tokens: the other animals sat there watching

Calculate the similarities between them using the bm25Similarity function. The output is a sparse
matrix.

similarities = bm25Similarity(documents);

Visualize the similarities of the documents in a heat map.

figure
heatmap(similarities);
xlabel("Document")
ylabel("Document")
title("BM25 Similarities")
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The first three documents have the highest pairwise similarities which indicates that these
documents are most similar. The last document has comparatively low pairwise similarities with the
other documents which indicates that this document is less like the other documents.

Similarity to Query

Create an array of input documents.

str = [
    "the quick brown fox jumped over the lazy dog"
    "the fast fox jumped over the lazy dog"
    "the dog sat there and did nothing"
    "the other animals sat there watching"];
documents = tokenizedDocument(str)

documents = 
  4x1 tokenizedDocument:

    9 tokens: the quick brown fox jumped over the lazy dog
    8 tokens: the fast fox jumped over the lazy dog
    7 tokens: the dog sat there and did nothing
    6 tokens: the other animals sat there watching

Create an array of query documents.

str = [
    "a brown fox leaped over the lazy dog"
    "another fox leaped over the dog"];

queries = tokenizedDocument(str)

queries = 
  2x1 tokenizedDocument:

    8 tokens: a brown fox leaped over the lazy dog
    6 tokens: another fox leaped over the dog

Calculate the similarities between input documents and query documents using the
bm25Similarity function. The output is a sparse matrix. The score in similarities(i,j)
represents the similarity between documents(i) and queries(j).

similarities = bm25Similarity(documents,queries);

Visualize the similarities of the documents in a heat map.

figure
heatmap(similarities);
xlabel("Query Document")
ylabel("Input Document")
title("BM25 Similarities")
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In this case, the first input document is most like the first query document.

Document Similarities Using Bag-of-Words Model

Create a bag-of-words model from the text data in sonnets.csv.

filename = "sonnets.csv";
tbl = readtable(filename,'TextType','string');
textData = tbl.Sonnet;
documents = tokenizedDocument(textData);
bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [154x3527 double]
      Vocabulary: [1x3527 string]
        NumWords: 3527
    NumDocuments: 154

Calculate similarities between the sonnets using the bm25Similarity function. The output is a
sparse matrix.

similarities = bm25Similarity(bag);
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Visualize the similarities between the first five documents in a heat map.

figure
heatmap(similarities(1:5,1:5));
xlabel("Document")
ylabel("Document")
title("BM25 Similarities")

Evaluate BM25+ Document Similarity

The BM25+ algorithm addresses a limitation of the BM25 algorithm: the component of the term-
frequency normalization by document length is not properly lower bounded. As a result of this
limitation, long documents which do not match the query term can often be scored unfairly by BM25
as having a similar relevance to shorter documents that do not contain the query term.

BM25+ addresses this limitation by using a document length correction factor (the value of the
'DocumentLengthScaling' name-value pair). This factor prevents the algorithm from over-
penalizing long documents.

Create two arrays of tokenized documents.

textData1 = [
    "the quick brown fox jumped over the lazy dog"
    "the fast fox jumped over the lazy dog"
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    "the dog sat there and did nothing"
    "the other animals sat there watching"];
documents1 = tokenizedDocument(textData1)

documents1 = 
  4x1 tokenizedDocument:

    9 tokens: the quick brown fox jumped over the lazy dog
    8 tokens: the fast fox jumped over the lazy dog
    7 tokens: the dog sat there and did nothing
    6 tokens: the other animals sat there watching

textData2 = [
    "a brown fox leaped over the lazy dog"
    "another fox leaped over the dog"];
documents2 = tokenizedDocument(textData2)

documents2 = 
  2x1 tokenizedDocument:

    8 tokens: a brown fox leaped over the lazy dog
    6 tokens: another fox leaped over the dog

To calculate the BM25+ document similarities, use the bm25Similarity function and set the
'DocumentLengthCorrection' option to a nonzero value. In this case, set the
'DocumentLengthCorrection' option to 1.

similarities = bm25Similarity(documents1,documents2,'DocumentLengthCorrection',1);

Visualize the similarities of the documents in a heat map.

figure
heatmap(similarities);
xlabel("Query")
ylabel("Document")
title("BM25+ Similarities")
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Here, when compared with the example “Similarity Between Documents” on page 1-52, the scores
show more similarity between the input documents and the first query document.

Input Arguments
documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a bagOfNgrams
object. If bag is a bagOfNgrams object, then the function treats each n-gram as a single word.

queries — Set of query documents
tokenizedDocument array | bagOfWords object | bagOfNgrams object | string array of words | cell
array of character vectors

Set of query documents, specified as one of the following:
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• A tokenizedDocument array
• A bagOfWords or bagOfNgrams object
• A 1-by-N string array representing a single document, where each element is a word
• A 1-by-N cell array of character vectors representing a single document, where each element is a

word

To compute term frequency and inverse document frequency statistics, the function encodes
queries using a bag-of-words model. The model it uses depends on the syntax you call it with. If
your syntax specifies the input argument documents, then it uses bagOfWords(documents). If
your syntax specifies bag, then it uses bag.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: bm25Similarity(documents,'TFScaling',1.5) returns the pairwise similarities for
the specified documents and sets the token frequency scaling factor to 1.5.

IDFWeight — Method to compute inverse document frequency factor
'textrank' (default) | 'classic-bm25' | 'normal' | 'unary' | 'smooth' | 'max' |
'probabilistic'

Method to compute inverse document frequency factor, specified as the comma-separated pair
consisting of 'IDFWeight' and one of the following:

• 'textrank' – Use TextRank IDF weighting [2]. For each term, set the IDF factor to

• log((N-NT+0.5)/(NT+0.5)) if the term occurs in more than half of the documents, where N
is the number of documents in the input data and NT is the number of documents in the input
data containing each term.

• IDFCorrection*avgIDF if the term occurs in half of the documents or f, where avgIDF is the
average IDF of all tokens.

• 'classic-bm25' – For each term, set the IDF factor to log((N-NT+0.5)/(NT+0.5)).
• 'normal' – For each term, set the IDF factor to log(N/NT).
• 'unary' – For each term, set the IDF factor to 1.
• 'smooth' – For each term, set the IDF factor to log(1+NT/NT).
• 'max' – For each term, set the IDF factor to log(1+max(NT)/NT).
• 'probabilistic' – For each term, set the IDF factor to log((N-NT)/NT).

where N is the number of documents in the input data and NT is the number of documents in the input
data containing each term.

TFScaling — Term frequency scaling factor
1.2 (default) | nonnegative scalar

Term frequency scaling factor, specified as the comma-separated pair consisting of 'TFScaling' and
a nonnegative scalar.

This option corresponds to the value k in the BM25 algorithm. For more information, see “BM25” on
page 1-61.
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DocumentLengthScaling — Document length scaling factor
0.75 (default) | scalar in the range [0,1]

Document length scaling factor, specified as the comma-separated pair consisting of
'DocumentLengthScaling' and a scalar in the range [0,1].

This option corresponds to the value b in the BM25 algorithm. When b=1, the BM25 algorithm is
equivalent to BM11. When b=0, the BM25 algorithm is equivalent to BM15. For more information,
see “BM11” on page 1-62, “BM15” on page 1-62, or “BM25” on page 1-61.
Data Types: double

IDFCorrection — Inverse document frequency correction factor
0.25 (default) | nonnegative scalar

Inverse document frequency correction factor, specified as the comma-separated pair consisting of
'IDFCorrection' and a nonnegative scalar.

This option only applies when 'IDFWeight' is 'textrank'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DocumentLengthCorrection — Document length correction factor
0 (default) | nonnegative scalar

Document length correction factor, specified as the comma-separated pair consisting of
'DocumentLengthCorrection' and a nonnegative scalar.

This option corresponds to the value δ in the BM25+ algorithm. If the document length correction
factor is nonzero, then the bm25Similarity function uses the BM25+ algorithm. Otherwise, the
function uses the BM25 algorithm. For more information, see “BM25+” on page 1-61.
Data Types: double

Output Arguments
similarities — BM25 similarity scores
sparse matrix

BM25 similarity scores, returned as a sparse matrix:

• Given a single array of tokenized documents, similarities is a N-by-N nonsymmetric matrix,
where similarities(i,j) represents the similarity between documents(i) and
documents(j), and N is the number of input documents.

• Given an array of tokenized documents and a set of query documents, similarities is an N1-by-
N2 matrix, where similarities(i,j) represents the similarity between documents(i) and
the jth query document, and N1 and N2 represents the number of documents in documents and
queries, respectively.

• Given a single bag-of-words or bag-of-n-grams model, similarities is a bag.NumDocuments-
by-bag.NumDocuments nonsymmetric matrix, where similarities(i,j) represents the
similarity between the ith and jth documents encoded by bag.

• Given a bag-of-words or bag-of-n-grams models and a set of query documents, similarities is a
bag.NumDocuments-by-N2 matrix, where similarities(i,j) represents the similarity
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between the ith document encoded by bag and the jth document in queries, and N2
corresponds to the number of documents in queries.

Tips
• The BM25 algorithm aggregates and uses information from all the documents in the input data via

the term frequency (TF) and inverse document frequency (IDF) based options. This behavior
means that the same pair of documents can yield different BM25 similarity scores when the
function is given different collections of documents.

• The BM25 algorithm can output different scores when comparing documents to themselves. This
behavior is due to the use of the IDF weights and the document length in the BM25 algorithm.

Algorithms
BM25

Given a document from a collection of documents D, and a query document, the BM25 score is given
by

BM25(document, query; D) = ∑
word∈ query

IDF(word;D

) Count(word, document)(k + 1)
Count(word, document) + k 1− b + b document

n
,

where

• Count(word,document) denotes the frequency of word in document.
• n denotes the average document length in D.
• k denotes the term frequency scaling factor (the value of the 'TFScaling' name-value pair

argument). This factor dampens the influence of frequently appearing terms on the BM25 score.
• b denotes the document length scaling factor (the value of the 'DocumentLengthScaling'

name-value pair argument). This factor controls how the length of a document influences the
BM25 score. When b=1, the BM25 algorithm is equivalent to BM11. When b=0, the BM25
algorithm is equivalent to BM15.

• IDF(word, D) is the inverse document frequency of the specified word given the collection of
documents D.

BM25+

The BM25+ algorithm addresses a limitation of the BM25 algorithm: the component of the term-
frequency normalization by document length is not properly lower bounded. As a result of this
limitation, long documents which do not match the query term can often be scored unfairly by BM25
as having a similar relevance to shorter documents that do not contain the query term.

The BM25+ algorithm is the same as the BM25 algorithm with one extra parameter. Given a
document from a collection of documents D and a query document, the BM25+ score is given by
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BM25+(document, query; D) = ∑
word∈ query

IDF(word;D

) Count(word, document)(k + 1)
Count(word, document) + k 1− b + b document

n
+ δ ,

where the extra parameter δ denotes the document length correction factor (the value of the
'DocumentLengthScaling' name-value pair). This factor prevents the algorithm from over-
penalizing long documents.

BM11

BM11 is a special case of “BM25” on page 1-61 when b=1.

Given a document from a collection of documents D, and a query document, the BM11 score is given
by

BM11(document, query; D) = ∑
word∈ query

IDF(word;D) Count(word, document)(k + 1)
Count(word, document) + k document

n
.

BM15

BM15 is a special case of “BM25” on page 1-61 when b=0.

Given a document from a collection of documents D, and a query document, the BM15 score is given
by

BM15(document, query; D) = ∑
word∈ query

IDF(word;D)Count(word, document)(k + 1)
Count(word, document) + k .
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See Also
bleuEvaluationScore | cosineSimilarity | extractSummary | lexrankScores | mmrScores
| rougeEvaluationScore | textrankScores | tokenizedDocument

Topics
“Sequence-to-Sequence Translation Using Attention”

Introduced in R2020a
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context
Search documents for word or n-gram occurrences in context

Syntax
T = context(documents,word)
T = context(documents,ngram)
T = context( ___ ,contextLength)
T = context( ___ ,'Source',source)

Description
T = context(documents,word) searches for occurrences of a single word in documents and
returns a table showing word in context and its locations.

T = context(documents,ngram) searches for occurrences of an n-gram in documents.

T = context( ___ ,contextLength) specifies the length of the context to return.

T = context( ___ ,'Source',source) displays the context in the original source string source
if the word is found.

Examples

Search Documents for Word Occurrences

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Search for the word "life".

tbl = context(documents,"life");
head(tbl)

ans=8×3 table
                            Context                             Document    Word
    ________________________________________________________    ________    ____

    "consumst thy self single life ah thou issueless shalt "        9        10 
    "ainted counterfeit lines life life repair times pencil"       16        35 
    "d counterfeit lines life life repair times pencil pupi"       16        36 
    " heaven knows tomb hides life shows half parts write b"       17        14 
    "he eyes long lives gives life thee                    "       18        69 
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    "tender embassy love thee life made four two alone sink"       45        23 
    "ves beauty though lovers life beauty shall black lines"       63        50 
    "s shorn away live second life second head ere beautys "       68        27 

View the occurrences in a string array.

tbl.Context

ans = 23x1 string
    "consumst thy self single life ah thou issueless shalt "
    "ainted counterfeit lines life life repair times pencil"
    "d counterfeit lines life life repair times pencil pupi"
    " heaven knows tomb hides life shows half parts write b"
    "he eyes long lives gives life thee                    "
    "tender embassy love thee life made four two alone sink"
    "ves beauty though lovers life beauty shall black lines"
    "s shorn away live second life second head ere beautys "
    "e rehearse let love even life decay lest wise world lo"
    "st bail shall carry away life hath line interest memor"
    "art thou hast lost dregs life prey worms body dead cow"
    "           thoughts food life sweetseasond showers gro"
    "tten name hence immortal life shall though once gone w"
    " beauty mute others give life bring tomb lives life fa"
    "ve life bring tomb lives life fair eyes poets praise d"
    " steal thyself away term life thou art assured mine li"
    "fe thou art assured mine life longer thy love stay dep"
    " fear worst wrongs least life hath end better state be"
    "anst vex inconstant mind life thy revolt doth lie o ha"
    " fame faster time wastes life thou preventst scythe cr"
    "ess harmful deeds better life provide public means pub"
    "ate hate away threw savd life saying                  "
    " many nymphs vowd chaste life keep came tripping maide"

Search Documents for N-Gram Occurrences

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Search for the bigram "dost thou".

ngram = ["dost" "thou"];
tbl = context(documents,ngram);
head(tbl)

ans=8×3 table
                               Context                               Document      Word  
    _____________________________________________________________    ________    ________
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    "unthrifty loveliness why dost thou spend upon thy self thy "        4        4     5
    "ee beauteous niggard why dost thou abuse bounteous largess "        4       25    26
    "ve profitless usurer why dost thou great sum sums yet canst"        4       35    36
    "eavy eyelids weary night dost thou desire slumbers broken s"       61       10    11
    "            sweet lovely dost thou make shame like canker f"       95        3     4
    "hy budding name o sweets dost thou thy sins enclose tongue "       95       19    20
    "ruth beauty love depends dost thou therein dignified make a"      101       16    17
    "    thou blind fool love dost thou mine eyes behold know be"      137        5     6

View the occurrences in a string array.

tbl.Context

ans = 10x1 string
    "unthrifty loveliness why dost thou spend upon thy self thy "
    "ee beauteous niggard why dost thou abuse bounteous largess "
    "ve profitless usurer why dost thou great sum sums yet canst"
    "eavy eyelids weary night dost thou desire slumbers broken s"
    "            sweet lovely dost thou make shame like canker f"
    "hy budding name o sweets dost thou thy sins enclose tongue "
    "ruth beauty love depends dost thou therein dignified make a"
    "    thou blind fool love dost thou mine eyes behold know be"
    "h rebel powers array why dost thou pine suffer dearth paint"
    "y large cost short lease dost thou upon thy fading mansion "

Specify Context Length

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Search for the word "life" and return each occurrence with a 15-character context before and after.

tbl = context(documents,"life",15);
head(tbl)

ans=8×3 table
                  Context                   Document    Word
    ____________________________________    ________    ____

    "hy self single life ah thou issuel"        9        10 
    "nterfeit lines life life repair ti"       16        35 
    "eit lines life life repair times p"       16        36 
    "ows tomb hides life shows half par"       17        14 
    "ng lives gives life thee          "       18        69 
    "assy love thee life made four two "       45        23 
    " though lovers life beauty shall b"       63        50 

 context

1-65



    "ay live second life second head er"       68        27 

View the occurrences in a string array.

tbl.Context

ans = 23x1 string
    "hy self single life ah thou issuel"
    "nterfeit lines life life repair ti"
    "eit lines life life repair times p"
    "ows tomb hides life shows half par"
    "ng lives gives life thee          "
    "assy love thee life made four two "
    " though lovers life beauty shall b"
    "ay live second life second head er"
    " let love even life decay lest wis"
    "all carry away life hath line inte"
    "ast lost dregs life prey worms bod"
    " thoughts food life sweetseasond s"
    "hence immortal life shall though o"
    "te others give life bring tomb liv"
    "ing tomb lives life fair eyes poet"
    "self away term life thou art assur"
    "t assured mine life longer thy lov"
    "t wrongs least life hath end bette"
    "nconstant mind life thy revolt dot"
    "er time wastes life thou preventst"
    "l deeds better life provide public"
    "way threw savd life saying        "
    "hs vowd chaste life keep came trip"

Specify Source Text

Specify source text to display context.

Load the sonnets.txt data and split it into separate documents.

txt = extractFileText("sonnets.txt");
paragraphs = split(txt,[newline newline]);

Extract the sonnets from paragraphs. The first sonnet is the fifth element of paragraphs, and the
remaining sonnets appear in every second element afterward.

sonnets = paragraphs(5:2:end);
documents = tokenizedDocument(sonnets);

Normalize the text, then search for the word "life".

documentsNormalized = normalizeWords(documents);
T = context(documentsNormalized,"life")

T=23×3 table
                            Context                             Document    Word
    ________________________________________________________    ________    ____
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    "sum'st thy self in singl life ? ah ! if thou issueless"        9        18 
    " : so should the line of life that life repair , which"       16        73 
    "ld the line of life that life repair , which thi , tim"       16        75 
    "s a tomb which hide your life , and show not half your"       17        34 
    " live thi , and thi give life to thee .               "       18       128 
    "ssi of love to thee , my life , be made of four , with"       45        53 
    "eauti , though my lover' life : hi beauti shall in the"       63       100 
    " awai , to live a second life on second head ; er beau"       68        59 
    "t your love even with my life decai ; lest the wise wo"       71       118 
    "shall carri me awai , my life hath in thi line some in"       74        18 
    "ast but lost the dreg of life , the prei of worm , my "       74        83 
    "to my thought as food to life , or as sweet-season'd s"       75        10 
    "ur name from henc immort life shall have , though i , "       81        42 
    " , when other would give life , and bring a tomb . the"       83       108 
    "a tomb . there live more life in on of your fair ey th"       83       118 
    "yself awai , for term of life thou art assur mine ; an"       92        13 
      ⋮

Since the words are normalized, the contexts may not be easy to read. To view the contexts using the
original text data, specify the source text using the 'Source' option.

T = context(documentsNormalized,"life",'Source',sonnets)

T=23×3 table
                            Context                             Document    Word
    ________________________________________________________    ________    ____

    "um'st thy self in single life? Ah! if thou issueless s"        9        18 
    ": So should the lines of life that life repair, Which "       16        73 
    "d the lines of life that life repair, Which this, Time"       16        75 
    " a tomb Which hides your life, and shows not half your"       17        34 
    "ves this, and this gives life to thee.                "       18       128 
    "assy of love to thee, My life, being made of four, wit"       45        53 
    "eauty, though my lover's life: His beauty shall in the"       63       100 
    "n away, To live a second life on second head; Ere beau"       68        59 
    "t your love even with my life decay; Lest the wise wor"       71       118 
    " shall carry me away, My life hath in this line some i"       74        18 
    "st but lost the dregs of life, The prey of worms, my b"       74        83 
    "o my thoughts as food to life, Or as sweet-season'd sh"       75        10 
    "name from hence immortal life shall have, Though I, on"       81        42 
    ", When others would give life, and bring a tomb. There"       83       108 
    "a tomb. There lives more life in one of your fair eyes"       83       118 
    "hyself away, For term of life thou art assured mine; A"       92        13 
      ⋮

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

word — Word to find
string scalar | character vector | scalar cell array
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Word to find in context, specified as a string scalar, character vector, or scalar cell array containing a
character vector.
Data Types: char | string | cell

ngram — N-gram to find
string array | cell array of character vectors

N-gram to find in context, specified as a string array or cell array of character vectors.

ngram has size 1-by-N , where N is the number of words in the n-gram. The value of ngram(j) is the
jth word of the n-gram.

The function ignores trailing empty strings in ngram.
Data Types: string | cell

contextLength — Context length
25 (default) | positive integer

Context length, specified as a positive integer.

source — Source text
string array | cell array of character vectors

Source text, specified as the comma-separated pair consisting of 'Source' and a string array or a
cell array of character vectors. If the input documents are preprocessed, and you have the source
text, then you can use this option to make the output more readable.

The source text must be the same size as documents.

Output Arguments
T — Table of contexts
table

Table of contexts with these columns:

Context String containing the queried word or n-gram in context
Document Numeric index of the document containing the word or n-gram
Word Numeric indices of the word or n-gram in the document

See Also
doc2cell | doclength | joinWords | string | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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correctSpelling
Correct spelling of words

Syntax
updatedDocuments = correctSpelling(documents)

updatedWords = correctSpelling(words)
updatedWords = correctSpelling(words,'Language',language)

[ ___ ,unknownWords] = correctSpelling( ___ )
___  = correctSpelling( ___ ,Name,Value)

Description
Use correctSpelling to correct spelling of words in string arrays or documents.

The function supports English, German, and Korean text.

updatedDocuments = correctSpelling(documents) corrects the spelling of the words in the
tokenizedDocument array documents.

updatedWords = correctSpelling(words) corrects the spelling of the words in the string
vector words.

updatedWords = correctSpelling(words,'Language',language) also specifies the
language of the words in the string vector words.

[ ___ ,unknownWords] = correctSpelling( ___ ) also returns a vector of words in the input
that were not found in the dictionary and for which no suggestion was found.

___  = correctSpelling( ___ ,Name,Value) specifies additional options using one or more
name-value pair arguments.

Examples

Correct Spelling of Words in Documents

Create a tokenized document array.

str = [
    "A documnent containing some misspelled worrds."
    "Another documnent cntaining typos."];
documents = tokenizedDocument(str);

Correct the spelling of the words in the documents using the correctSpelling function.

updatedDocuments = correctSpelling(documents)

updatedDocuments = 
  2×1 tokenizedDocument:
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    7 tokens: A document containing some misspelled words .
    5 tokens: Another document containing typos .

Correct Spelling of Words in String Array

Create a string array of words.

words = ["A" "strng" "array" "containing" "misspelled" "worrds" "."];

Correct the spelling of the words in the string array using the correctSpelling function.

updatedWords = correctSpelling(words)

updatedWords = 1x7 string
  Columns 1 through 6

    "A"    "string"    "array"    "containing"    "misspelled"    "words"

  Column 7

    "."

Specify Known Words

Create a tokenized document array.

str = [
    "Analyze text data using MATLAB."
    "Another documnent cntaining typos."];
documents = tokenizedDocument(str);

Correct the spelling of the words in the documents using the correctSpelling function.

updatedDocuments = correctSpelling(documents)

updatedDocuments = 
  2×1 tokenizedDocument:

    7 tokens: Analyze text data using MAT LAB .
    5 tokens: Another document containing typos .

Notice that the word "MATLAB" gets split into the two words "MAT" and "LAB".

Correct the spelling of the documents and specify "MATLAB" as a known word using the
'KnownWords' option.

updatedDocuments = correctSpelling(documents,'KnownWords',"MATLAB")

updatedDocuments = 
  2×1 tokenizedDocument:
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    6 tokens: Analyze text data using MATLAB .
    5 tokens: Another document containing typos .

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.
Data Types: string | char | cell

language — Word language
'en' | 'de' | 'ko'

Word language, specified as one of the following:

• 'en' – English language
• 'de' – German language
• 'ko' – Korean language

If you do not specify language, then the software detects the language automatically.
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: correctSpelling(documents,'KnownWords',["MathWorks" "MATLAB"]) corrects
the spelling of the words in documents and treats the words "MathWorks" and "MATLAB" as
correctly spelled words.

KnownWords — Words to be treated as correct
[] (default) | string array | cell array of character vectors

Words to be treated as correct, specified as the comma-separated pair consisting of 'KnownWords'
and a string array or a cell array of character vectors.

If you specify a list of known words, then these words remain unchanged when the function corrects
spelling. The software may also substitute misspelled words with words from the list of known words.
Example: ["MathWorks" "MATLAB"]
Data Types: char | string | cell
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ExtensionDictionary — Hunspell extension dictionary file
'' (default) | file path

Hunspell extension dictionary file (also known as personal dictionary file), specified as the comma-
separated pair consisting of 'ExtensionDictionary' and a file path of a Hunspell extension
dictionary file.

A Hunspell extension dictionary file is a .dic file containing the number of words in the dictionary
followed by a list of the words in the following format:

word1/affixWord1
word2/affixWord2
...
wordN/affixWordN
*forbiddenWord1
*forbiddenWord2
...
*forbiddenWordM

where:

• word1, word2, …, wordN is a list words to extend the Hunspell dictionary with.
• affixWord1, affixWord2, …, affixWordN (optional) indicate words in the Hunspell dictionary

that share affixes. Indicate affixes by concatenating them to the corresponding word with a
forward slash (/). For example, the entry exxxtreme/extreme indicates that affixes that apply to
the word "extreme" also apply to the custom word "exxxtreme".

• forbiddenWord1, forbiddenWord2, …, forbiddenWordN is a list of forbidden words to use for
spelling correction. Indicate forbidden words using an asterisk (*).

The entries in the Hunspell extension dictionary file can appear in any order.

For example, to create a Hunspell extension dictionary file specifying:

• The words "MathWorks", "MATLAB", and "exxxtreme".
• The affixes that apply to the word "extreme" also apply to the word "exxxtreme".
• The word "MATLOB" is a forbidden word.

use:

MathWorks
MATLAB
exxxtreme/extreme
*MATLOB

For an example showing how to create Hunspell extension dictionary files, see “Create Extension
Dictionary for Spelling Correction”. For more information about the options of Hunspell dictionary
files, see https://manpages.ubuntu.com/manpages/trusty/en/man4/hunspell.4.html.
Data Types: char | string

Dictionary — Hunspell dictionary file
'' (default) | file path

Hunspell dictionary file, specified as the comma-separated pair consisting of 'Dictionary' and a
file path of a Hunspell dictionary file.
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A Hunspell dictionary file is a .dic file containing the number of words in the dictionary followed by
a list of the words in the following format:

N
word1/flags1
word2/flags2
...
wordN/flagsN

where N is the number of words in the dictionary file, word1, word2, …, wordN are the N words in the
dictionary, and flags1, …, flagsN specify optional flags corresponding to the words word1, word2,
…, wordN, respectively. Use flags to specify word attributes, for example affixes. To specify a
Hunspell affix file, use the 'Affixes' option.

For example, a to create a Hunspell dictionary file containing the 4 words "MathWorks", "MATLAB",
"correctSpelling", and "tokenizedDocument", use:

4
MathWorks
MATLAB
correctSpelling
tokenizedDocument

For more information about the options of Hunspell dictionary files, see https://
manpages.ubuntu.com/manpages/trusty/en/man4/hunspell.4.html.
Data Types: char | string

Affixes — Hunspell affix file
'' (default) | file path

Hunspell affix file, specified as the comma-separated pair consisting of 'Affixes' and a file path of
a Hunspell affix file.

A Hunspell affix file is a .aff file containing the number of words in the dictionary followed by a list
of the words in the following format:

option1 values1
option2 values2
...
optionM valuesM

where M is the number of options in the affix file, option1, option2, …, optionM are the M options,
and values1, …, valuesN specify the values corresponding to the options option1, option2, …,
optionM, respectively. Use these options to specify affixes.

Prefixes

To define a prefix rule, use the PFX option with the format:

PFX flag crossProduct K
PFX flag stripping1 prefix1 condition1
...
PFX flag strippingK prefixK conditionK

where the values:
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• flag corresponds to the flags used in the Hunspell dictionary file.
• crossProduct indicates whether prefixes and suffixes can be mixed, specified as Y or N.
• K is the number of prefixes defined for the specified flag.
• stripping1, stripping2, …, strippingK indicate characters to be stripped from the word

when applying prefix. If the stripping value is 0, then no stripping takes place.
• prefix1, prefix2, …, prefixK specify the prefixes to use.
• condition1, condition2, …, conditionK specify the optional conditions for which to apply the
prefixes prefix1, prefix2, …, prefixK, respectively. For the trivial condition, specify ".".

Suffixes

To define a suffix rule, use the SFX option with the format:

SFX flag crossProduct K
SFX flag stripping1 suffix1 condition1
...
SFX flag strippingK suffixK conditionK

where suffix1, suffix2, …, suffixK specify the prefixes to use, and the flag, cross product, K,
stripping, and condition values are the same as the prefix format.

Example

Create a Hunspell affix file defining the following affix rules:

• Flag A:

• prefix words with "re"
• Flag B:

• suffix words not ending with "y" with "ed".
• suffix words ending with "y" with "ied", removing "y".

use the Hunspell affix file:

PFX A Y 1
PFX A 0 re .

SFX B Y 1
SFX B 0 ed [^y]
SFX B y ied y

To use these flags in a Hunspell dictionary file, append the appropriate flags to the words using the
"/". For each word, you can specify multiple flags. For example, to specify a dictionary file
containing:

• The words "ptest" and "ptry".
• For the word "ptest" only, also include the prefix "re" using flag A.
• For both words, also include the suffixes "ed" or "ied" where appropriate using flag B

For more information about the options of Hunspell affix files, see https://manpages.ubuntu.com/
manpages/trusty/en/man4/hunspell.4.html.
Data Types: char | string
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RetokenizeMethod — Method to retokenize documents
'split' (default) | 'none'

Method to retokenize documents, specified as the comma-separated pair consisting of
'RetokenizeMethod' and one of the following:

• 'split' – Correct spelling by splitting tokens. For example, split the incorrectly spelled token
"twowords" into the correctly spelled tokens "two" and "words".

• 'none' – Do not split tokens for spelling correction.

Output Arguments
updatedDocuments — Corrected documents
tokenizedDocument array

Corrected documents, returned as a tokenizedDocument array. If the 'RetokenizeMethod'
option is 'split', then the number of words in each updated document may be different to the
corresponding input document.

If there are multiple candidates for corrected words, then the function automatically selects a single
word for correction.

updatedWords — Corrected words
string vector

Corrected words, returned as a string vector. If the 'RetokenizeMethod' option is 'split', then
the number of updated words may be different the number of input words.

If there are multiple candidates for corrected words, then the function automatically selects a single
word for correction.

unknownWords — Unknown words
string vector

Unknown words, returned as a string vector. The string vector unknownWords contains the input
words that are not in the spelling correction dictionary and for which no suggestions are found.

See Also
editDistance | editDistanceSearcher | tokenizedDocument

Topics
“Correct Spelling in Documents”
“Create Extension Dictionary for Spelling Correction”
“Create Custom Spelling Correction Function Using Edit Distance Searchers”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”

Introduced in R2020a
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corpusLanguage
Detect language of text

Syntax
language = corpusLanguage(str)

Description
Use corpusLanguage to detect language of text.

The function supports English, Japanese, German, and Korean text.

language = corpusLanguage(str) detects the language of the text in str.

Examples

Detect Language of Text

Detect the language of a string array of text.

str = [
    "恋の悩みで 苦しむ。"
    "空の星が輝きを増している。"];
language = corpusLanguage(str)

language = 
'ja'

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short sentence."]
Data Types: string | char | cell

Output Arguments
language — Detected language
'en' | 'ja' | 'de' | 'ko'

Detected language, returned as one of the following:

• 'en' – Detected English text
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• 'ja' – Detected Japanese text
• 'de' – Detected German text
• 'ko' – Detected Korean text

See Also
abbreviations | addLanguageDetails | addLemmaDetails | addPartOfSpeechDetails |
addSentenceDetails | splitSentences | tokenDetails | tokenizedDocument |
topLevelDomains

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Language Considerations”
“Japanese Language Support”
“German Language Support”

Introduced in R2018b
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cosineSimilarity
Document similarities with cosine similarity

Syntax
similarities = cosineSimilarity(documents)
similarities = cosineSimilarity(documents,queries)

similarities = cosineSimilarity(bag)
similarities = cosineSimilarity(bag,queries)

similarities = cosineSimilarity(M)
similarities = cosineSimilarity(M1,M2)

Description
similarities = cosineSimilarity(documents) returns the pairwise cosine similarities for the
specified documents using the tf-idf matrix derived from their word counts. The score in
similarities(i,j) represents the similarity between documents(i) and documents(j).

similarities = cosineSimilarity(documents,queries) returns similarities between
documents and queries using tf-idf matrices derived from the word counts in documents. The
score in similarities(i,j) represents the similarity between documents(i) and queries(j).

similarities = cosineSimilarity(bag) returns pairwise similarities for the documents
encoded by the specified bag-of-words or bag-of-n-grams model using the tf-idf matrix derived from
the word counts in bag. The score in similarities(i,j) represents the similarity between the ith
and jth documents encoded by bag.

similarities = cosineSimilarity(bag,queries) returns similarities between the documents
encoded by the bag-of-words or bag-of-n-grams model bag and queries using tf-idf matrices derived
from the word counts in bag. The score in similarities(i,j) represents the similarity between
the ith document encoded by bag and queries(j).

similarities = cosineSimilarity(M) returns similarities for the data encoded in the row
vectors of the matrix M. The score in similarities(i,j) represents the similarity between M(i,:)
and M(j,:).

similarities = cosineSimilarity(M1,M2) returns similarities between the documents
encoded in the matrices M1 and M2. The score in similarities(i,j) corresponds to the similarity
between M1(i,:) and M2(j,:).

Examples

Similarity Between Documents

Create an array of tokenized documents.

textData = [
    "the quick brown fox jumped over the lazy dog"
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    "the fast brown fox jumped over the lazy dog"
    "the lazy dog sat there and did nothing"
    "the other animals sat there watching"];
documents = tokenizedDocument(textData)

documents = 
  4x1 tokenizedDocument:

    9 tokens: the quick brown fox jumped over the lazy dog
    9 tokens: the fast brown fox jumped over the lazy dog
    8 tokens: the lazy dog sat there and did nothing
    6 tokens: the other animals sat there watching

Calculate the similarities between them using the cosineSimilarity function. The output is a
sparse matrix.

similarities = cosineSimilarity(documents);

Visualize the similarities between the documents in a heat map.

figure
heatmap(similarities);
xlabel("Document")
ylabel("Document")
title("Cosine Similarities")

Scores close to one indicate strong similarity. Scores close to zero indicate weak similarity.
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Similarity to Query

Create an array of input documents.

str = [
    "the quick brown fox jumped over the lazy dog"
    "the fast fox jumped over the lazy dog"
    "the dog sat there and did nothing"
    "the other animals sat there watching"];
documents = tokenizedDocument(str)

documents = 
  4x1 tokenizedDocument:

    9 tokens: the quick brown fox jumped over the lazy dog
    8 tokens: the fast fox jumped over the lazy dog
    7 tokens: the dog sat there and did nothing
    6 tokens: the other animals sat there watching

Create an array of query documents.

str = [
    "a brown fox leaped over the lazy dog"
    "another fox leaped over the dog"];
queries = tokenizedDocument(str)

queries = 
  2x1 tokenizedDocument:

    8 tokens: a brown fox leaped over the lazy dog
    6 tokens: another fox leaped over the dog

Calculate the similarities between input and query documents using the cosineSimilarity
function. The output is a sparse matrix.

similarities = cosineSimilarity(documents,queries);

Visualize the similarities of the documents in a heat map.

figure
heatmap(similarities);
xlabel("Query Document")
ylabel("Input Document")
title("Cosine Similarities")
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Scores close to one indicate strong similarity. Scores close to zero indicate weak similarity.

Document Similarities Using Bag-of-Words Model

Create a bag-of-words model from the text data in sonnets.csv.

filename = "sonnets.csv";
tbl = readtable(filename,'TextType','string');
textData = tbl.Sonnet;
documents = tokenizedDocument(textData);
bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [154x3527 double]
      Vocabulary: [1x3527 string]
        NumWords: 3527
    NumDocuments: 154

Calculate similarities between the sonnets using the cosineSimilarity function. The output is a
sparse matrix.

similarities = cosineSimilarity(bag);
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Visualize the similarities of the first five documents in a heat map.

figure
heatmap(similarities(1:5,1:5));
xlabel("Document")
ylabel("Document")
title("Cosine Similarities")

Scores close to one indicate strong similarity. Scores close to zero indicate weak similarity.

Similarities Within Word Count Matrix

For bag-of-words input, the cosineSimilarity function calculates the cosine similarity using the tf-
idf matrix derived from the model. To compute the cosine similarities on the word count vectors
directly, input the word counts to the cosineSimilarity function as a matrix.

Create a bag-of-words model from the text data in sonnets.csv.

filename = "sonnets.csv";
tbl = readtable(filename,'TextType','string');
textData = tbl.Sonnet;
documents = tokenizedDocument(textData);
bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:
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          Counts: [154x3527 double]
      Vocabulary: [1x3527 string]
        NumWords: 3527
    NumDocuments: 154

Get the matrix of word counts from the model.

M = bag.Counts;

Calculate the cosine document similarities of the word count matrix using the cosineSimilarity
function. The output is a sparse matrix.

similarities = cosineSimilarity(M);

Visualize the similarities of the first five documents in a heat map.

figure
heatmap(similarities(1:5,1:5));
xlabel("Document")
ylabel("Document")
title("Cosine Similarities")

Scores close to one indicate strong similarity. Scores close to zero indicate weak similarity.
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Input Arguments
documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a bagOfNgrams
object. If bag is a bagOfNgrams object, then the function treats each n-gram as a single word.

queries — Set of query documents
tokenizedDocument array | string array of words | cell array of character vectors

Set of query documents, specified as one of the following:

• A tokenizedDocument array
• A 1-by-N string array representing a single document, where each element is a word
• A 1-by-N cell array of character vectors representing a single document, where each element is a

word

To compute term frequency and inverse document frequency statistics, the function encodes
queries using a bag-of-words model. The model it uses depends on the syntax you call it with. If
your syntax specifies the input argument documents, then it uses bagOfWords(documents). If
your syntax specifies bag, then the function encodes queries using bag then uses the resulting tf-idf
matrix.

M — Input data
matrix

Input data, specified as a matrix. For example, M can be a matrix of word or n-gram counts or a tf-idf
matrix.
Data Types: double

Output Arguments
similarities — Cosine similarity scores
sparse matrix

Cosine similarity scores, returned as a sparse matrix:

• Given a single array of tokenized documents, similarities is a N-by-N symmetric matrix, where
similarities(i,j) represents the similarity between documents(i) and documents(j), and
N is the number of input documents.

• Given an array of tokenized documents and a set of query documents, similarities is an N1-by-
N2 matrix, where similarities(i,j) represents the similarity between documents(i) and
the jth query document, and N1 and N2 represents the number of documents in documents and
queries, respectively.
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• Given a single bag-of-words or bag-of-n-grams model, similarities is a bag.NumDocuments-
by-bag.NumDocuments symmetric matrix, where similarities(i,j) represents the similarity
between the ith and jth documents encoded by bag.

• Given a bag-of-words or bag-of-n-grams models and a set of query documents, similarities is a
bag.NumDocuments-by-N2 matrix, where similarities(i,j) represents the similarity
between the ith document encoded by bag and the jth document in queries, and N2
corresponds to the number of documents in queries.

• Given a single matrix, similarities is a size(M,1)-by-size(M,1) symmetric matrix, where
similarities(i,j) represents the similarity between M(i,:) and M(j,:).

• Given two matrices, similarities is an size(M1,1)-by-size(M2,1) matrix, where
similarities(i,j) represents the similarity between M1(i,:) and M2(j,:).

See Also
bleuEvaluationScore | bm25Similarity | extractSummary | lexrankScores | mmrScores |
rougeEvaluationScore | textrankScores | tokenizedDocument

Topics
“Sequence-to-Sequence Translation Using Attention”

Introduced in R2020a
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decodeHTMLEntities
Convert HTML and XML entities into characters

Syntax
newStr = decodeHTMLEntities(str)

Description
newStr = decodeHTMLEntities(str) replaces HTML and XML character entities and numeric
character references in the elements of str with their Unicode equivalent.

Examples

Replace HTML Entities with Unicode

Replace HTML character entities with their Unicode equivalent.

str = ["&lt;&gt;" "R&amp;D"];
newStr = decodeHTMLEntities(str)

newStr = 1x2 string
    "<>"    "R&D"

Replace HTML numeric character references with their Unicode equivalent. Unicode character with
hex code &#x20 is a space.

str = "R&#x20;D";
newStr = decodeHTMLEntities(str)

newStr = 
"R D"

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short sentence."]
Data Types: string | char | cell

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors
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Output text, returned as a string array, a character vector, or cell array of character vectors. str and
newStr have the same data type.

See Also
erasePunctuation | eraseTags | eraseURLs | lower | tokenizedDocument | upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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doclength
Length of documents in document array

Syntax
N = doclength(documents)

Description
N = doclength(documents) returns the number of tokens in each document in documents.

Examples

Find Number of Words in Documents

Find the number of words in an array of tokenized documents. Erase the punctuation characters so
they do not get counted as words.

str = [ ...
    "An example of a short sentence." 
    "A second short sentence."];
documents = tokenizedDocument(str)

documents = 
  2x1 tokenizedDocument:

    7 tokens: An example of a short sentence .
    5 tokens: A second short sentence .

documents = erasePunctuation(documents)

documents = 
  2x1 tokenizedDocument:

    6 tokens: An example of a short sentence
    4 tokens: A second short sentence

N = doclength(documents)

N = 2×1

     6
     4

Input Arguments
documents — Input documents
tokenizedDocument array
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Input documents, specified as a tokenizedDocument array.

Output Arguments
N — Document lengths
vector of nonnegative integers

Document lengths, returned as a vector of nonnegative integers. The size of N is the same as the size
of documents.

See Also
context | doc2cell | joinWords | string | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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doc2cell
Convert documents to cell array of string vectors

Syntax
C = doc2cell(documents)

Description
C = doc2cell(documents) converts a tokenizedDocument array to a cell array. The entries of C
are string arrays containing the corresponding words in each document.

Examples

Convert Document Array to Cell Array

Convert a tokenizedDocument array to a cell array of string vectors.

documents = tokenizedDocument([ ...
    "an example of a short sentence" ...
    "a second short sentence"])

documents = 
  1x2 tokenizedDocument:

    6 tokens: an example of a short sentence
    4 tokens: a second short sentence

C = doc2cell(documents)

C=1×2 cell array
    {1x6 string}    {1x4 string}

View the first element of the cell array.

C{1}

ans = 1x6 string
    "an"    "example"    "of"    "a"    "short"    "sentence"

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.
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Output Arguments
C — Output cell array
cell array of string vectors

Output cell array of string vectors. Each element of C is a string vector containing the words of the
corresponding document.

See Also
context | doclength | joinWords | string | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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doc2sequence
Convert documents to sequences for deep learning

Syntax
sequences = doc2sequence(enc,documents)
sequences = doc2sequence(emb,documents)
sequences = doc2sequence( ___ ,Name,Value)

Description
sequences = doc2sequence(enc,documents) returns a cell array of the numeric indices of the
words in documents given by the word encoding enc. Each element of sequences is a vector of the
indices of the words in the corresponding document.

sequences = doc2sequence(emb,documents) returns a cell array of the embedding vectors of
the words in documents given by the word embedding emb. Each element of sequences is a matrix
of the embedding vectors of the words in the corresponding document.

sequences = doc2sequence( ___ ,Name,Value) specifies additional options using one or more
name-value pair arguments.

Examples

Convert Documents to Sequences of Word Indices

Load the factory reports data and create a tokenizedDocument array.

filename = "factoryReports.csv";
data = readtable(filename,'TextType','string');
textData = data.Description;
documents = tokenizedDocument(textData);

Create a word encoding.

enc = wordEncoding(documents);

Convert the documents to sequences of word indices.

sequences = doc2sequence(enc,documents);

View the sizes of the first 10 sequences. Each sequence is a 1-by-S vector, where S is the number of
word indices in the sequence. Because the sequences are padded, S is constant.

sequences(1:10)

ans=10×1 cell array
    {1x17 double}
    {1x17 double}
    {1x17 double}
    {1x17 double}
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    {1x17 double}
    {1x17 double}
    {1x17 double}
    {1x17 double}
    {1x17 double}
    {1x17 double}

Convert Documents to Sequences of Word Vectors

Convert an array of tokenized documents to sequences of word vectors using a pretrained word
embedding.

Load a pretrained word embedding using the fastTextWordEmbedding function. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding
support package. If this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Load the factory reports data and create a tokenizedDocument array.

filename = "factoryReports.csv";
data = readtable(filename,'TextType','string');
textData = data.Description;
documents = tokenizedDocument(textData);

Convert the documents to sequences of word vectors using doc2sequence. The doc2sequence
function, by default, left-pads the sequences to have the same length. When converting large
collections of documents using a high-dimensional word embedding, padding can require large
amounts of memory. To prevent the function from padding the data, set the 'PaddingDirection'
option to 'none'. Alternatively, you can control the amount of padding using the 'Length' option.

sequences = doc2sequence(emb,documents,'PaddingDirection','none');

View the sizes of the first 10 sequences. Each sequence is D-by-S matrix, where D is the embedding
dimension, and S is the number of word vectors in the sequence.

sequences(1:10)

ans=10×1 cell array
    {300×10 single}
    {300×11 single}
    {300×11 single}
    {300×6  single}
    {300×5  single}
    {300×10 single}
    {300×8  single}
    {300×9  single}
    {300×7  single}
    {300×13 single}
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Pad or Truncate Sequences to Specified Length

Convert a collection of documents to sequences of word vectors using a pretrained word embedding,
and pad or truncate the sequences to a specified length.

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Load the factory reports data and create a tokenizedDocument array.

filename = "factoryReports.csv";
data = readtable(filename,'TextType','string');
textData = data.Description;
documents = tokenizedDocument(textData);

Convert the documents to sequences of word vectors. Specify to left-pad or truncate the sequences to
have length 100.

sequences = doc2sequence(emb,documents,'Length',100);

View the sizes of the first 10 sequences. Each sequence is D-by-S matrix, where D is the embedding
dimension, and S is the number of word vectors in the sequence (the sequence length). Because the
sequence length is specified, S is constant.

sequences(1:10)

ans=10×1 cell array
    {300×100 single}
    {300×100 single}
    {300×100 single}
    {300×100 single}
    {300×100 single}
    {300×100 single}
    {300×100 single}
    {300×100 single}
    {300×100 single}
    {300×100 single}

Input Arguments
emb — Input word embedding
wordEmbedding object

Input word embedding, specified as a wordEmbedding object.

enc — Input word encoding
wordEncoding object

Input word encoding, specified as a wordEncoding object.

documents — Input documents
tokenizedDocument array
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Input documents, specified as a tokenizedDocument array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Length','shortest' truncates the sequences to have the same length as the shortest
sequence.

UnknownWord — Unknown word behavior
'discard' (default) | 'nan'

Unknown word behavior, specified as the comma-separated pair consisting of 'UnknownWord' and
one of the following:

• 'discard' – If a word is not in the input map, then discard it.
• 'nan' – If a word is not in the input map, then return a NaN value.

Tip If you are creating sequences for training a deep learning network with a word embedding, use
'discard'. Do not use sequences with NaN values, because doing so can propagate errors through
the network.

PaddingDirection — Padding direction
'left' (default) | 'right' | 'none'

Padding direction, specified as the comma-separated pair consisting of 'PaddingDirection' and
one of the following:

• 'left' – Pad sequences on the left.
• 'right' – Pad sequences on the right.
• 'none' – Do not pad sequences.

Tip When converting large collections of data using a high-dimensional word embedding, padding
can require large amounts of memory. To prevent the function from adding too much padding, set the
'PaddingDirection' option to 'none' or set 'Length' to a smaller value.

PaddingValue — Padding value
0 (default) | numeric scalar

Padding value, specified as the comma-separated pair consisting of 'PaddingValue' and a numeric
scalar. Do not pad sequences with NaN, because doing so can propagate errors through the network.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Length — Sequence length
'longest' (default) | 'shortest' | positive integer

Sequence length, specified as the comma-separated pair consisting of 'Length' and one of the
following:
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• 'longest' – Pad sequences to have the same length as the longest sequence.
• 'shortest' – Truncate sequences to have the same length as the shortest sequence.
• Positive integer – Pad or truncate sequences to have the specified length. The function truncates

the sequences on the right.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Output Arguments
sequences — Output sequences
cell array

Output sequences, returned as a cell array.

For word embedding input, the ith element of sequences is a matrix of the word vectors
corresponding to the ith input document.

For word encoding input, the ith element of sequences is a vector of the word encoding indices
corresponding to the ith input document.

Tips
• When converting large collections of data using a high-dimensional word embedding, padding can

require large amounts of memory. To prevent the function from adding too much padding, set the
'PaddingDirection' option to 'none' or set 'Length' to a smaller value.

See Also
fastTextWordEmbedding | ind2word | isVocabularyWord | tokenizedDocument |
trainWordEmbedding | vec2word | word2ind | word2vec | wordEmbedding |
wordEmbeddingLayer | wordEncoding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2018b
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docfun
Apply function to words in documents

Syntax
newDocuments = docfun(func,documents)
newDocuments = docfun(func,documents1,...,documentsN)

Description
newDocuments = docfun(func,documents) calls the function specified by the function handle
func and passes elements of documents as a string vector of words.

• If func accepts exactly one input argument, then the words of newDocuments(i) are the output
of func(string(documents(i))).

• If func accepts two input arguments, then the words of newDocuments(i) are the output of
func(string(documents(i)),details), where details contains the corresponding token
details output by tokenDetails.

• If func changes the number of words in the document, then docfun removes the token details
from that document.

docfun does not perform the calls to function func in a specific order.

newDocuments = docfun(func,documents1,...,documentsN) calls the function specified by
the function handle func and passes elements of documents1,…,documentsN as string vectors of
words, where N is the number of inputs to the function func. The words of newDocuments(i) are
the output of func(string(documents1(i)),...,string(documentsN(i))).

Each of documents1,…,documentsN must be the same size.

Examples

Reverse Words in Documents

Apply reverse to each word in a document array.

documents = tokenizedDocument([ ...
    "an example of a short sentence" 
    "a second short sentence"])

documents = 
  2x1 tokenizedDocument:

    6 tokens: an example of a short sentence
    4 tokens: a second short sentence

func = @reverse;
newDocuments = docfun(func,documents)
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newDocuments = 
  2x1 tokenizedDocument:

    6 tokens: na elpmaxe fo a trohs ecnetnes
    4 tokens: a dnoces trohs ecnetnes

Specify Document Function with Multiple Inputs

Tag words by combining the words from one document array with another, using the string function
plus.

Create the first tokenizedDocument array. Erase the punctuation and convert the text to lowercase.

str = [ ...
    "An example of a short sentence."
    "A second short sentence."];
str = erasePunctuation(str);
str = lower(str);
documents1 = tokenizedDocument(str)

documents1 = 
  2x1 tokenizedDocument:

    6 tokens: an example of a short sentence
    4 tokens: a second short sentence

Create the second tokenizedDocument array. The documents have the same number of words as
the corresponding documents in documents1. The words of documents2 are POS tags for the
corresponding words.

documents2 = tokenizedDocument([ ...
    "_det _noun _prep _det _adj _noun"
    "_det _adj _adj _noun"])

documents2 = 
  2x1 tokenizedDocument:

    6 tokens: _det _noun _prep _det _adj _noun
    4 tokens: _det _adj _adj _noun

func = @plus;
newDocuments = docfun(func,documents1,documents2)

newDocuments = 
  2x1 tokenizedDocument:

    6 tokens: an_det example_noun of_prep a_det short_adj sentence_noun
    4 tokens: a_det second_adj short_adj sentence_noun

The output is not the same as calling plus on the documents directly.

plus(documents1,documents2)
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ans = 
  2x1 tokenizedDocument:

    12 tokens: an example of a short sentence _det _noun _prep _det _adj _noun
     8 tokens: a second short sentence _det _adj _adj _noun

Input Arguments
func — Function handle
function handle

Function handle that accepts N string arrays as inputs and outputs a string array. func must accept
string(documents1(i)),...,string(documentsN(i)) as input.

Function handle to apply to words in documents. The function must have one of the following
syntaxes:

• newWords = func(words), where words is a string array of the words of a single document.
• newWords = func(words,details), where words is a string array of the words of a single

document, and details is the corresponding table of token details given by tokenDetails.
• newWords = func(words1,...,wordsN), where words1,...,wordsN are string arrays of

words.

Example: @reverse
Data Types: function_handle

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also
addPartOfSpeechDetails | addSentenceDetails | bagOfNgrams | bagOfWords |
decodeHTMLEntities | lower | plus | regexprep | replace | tokenDetails |
tokenizedDocument | upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Create Custom Spelling Correction Function Using Edit Distance Searchers”

Introduced in R2017b

 docfun

1-99



editDistance
Find edit distance between two strings or documents

Syntax
d = editDistance(str1,str2)
d = editDistance(document1,document2)
d = editDistance( ___ ,Name,Value)

Description
d = editDistance(str1,str2) returns the lowest number of grapheme (Unicode term for
human-perceived characters) insertions, deletions, and substitutions required to convert str1 to
str2.

d = editDistance(document1,document2) returns the lowest number of token insertions,
deletions, and substitutions required to convert document1 to document2.

d = editDistance( ___ ,Name,Value) specifies additional options using one or more name-value
pair arguments.

Examples

Edit Distance Between Two Strings

Find the edit distance between the strings "Text analytics" and "Text analysis". The edit
distance, by default, is the total number of grapheme insertions, deletions, and substitutions required
to change one string to another.

str1 = "Text analytics";
str2 = "Text analysis";

Find the edit distance.

d = editDistance(str1,str2)

d = 2

This means changing the first string to the second requires two edits. For example:

1 Substitution – Substitute the character "t" to an "s": "Text analytics" to "Text
analysics".

2 Deletion – Delete the character "c": "Text analysics" to "Text analysis".
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Edit Distance Between Two Documents

Find the edit distance between two tokenized documents. For tokenized document input, the edit
distance, by default, is the total number of token insertions, deletions, and substitutions required to
change one document to another.

str1 = "It's time for breakfast.";
document1 = tokenizedDocument(str1);

str2 = "It's now time to sleep.";
document2 = tokenizedDocument(str2);

Find the edit distance.

d = editDistance(document1,document2)

d = 3

This means changing the first document to the second requires three edits. For example:

1 Insertion – Insert the word "now".
2 Substitution – Substitute the word "for" with "to".
3 Substitution – Substitute the word "breakfast" with "sleep".

Specify Cost Values

The editDistance function, by default, returns the lowest number of grapheme insertions,
deletions, and substitutions required to change one string to another. To also include the swap action
in the calculation, use the 'SwapCost' option.

First, find the edit distance between the strings "MATALB" and "MATLAB".

str1 = "MATALB";
str2 = "MATLAB";
d = editDistance(str1,str2)

d = 2

One possible edit is:

1 Substitute the second "A" with "L": ("MATALB" to "MATLLB").
2 Substitute the second "L" with "A": ("MATLLB" to "MATLAB").

The default value for the swap cost (the cost of swapping two adjacent graphemes) is Inf. This
means that swaps do not count towards the edit distance. To include swaps, set the 'SwapCost'
option to 1.

d = editDistance(str1,str2,'SwapCost',1)

d = 1

This means there is one action. For example, swap the adjacent characters "A" and "L".
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Specify Custom Cost Function

To compute the edit distance between two words and specify that the edits are case-insensitive,
specify a custom substitute cost function.

First, compute the edit distance between the strings "MATLAB" and "MathWorks".

d = editDistance("MATLAB","MathWorks")

d = 8

This means changing the first string to the second requires eight edits. For example:

1 Substitution – Substitute the character "A" with "a". ("MATLAB" to "MaTLAB")
2 Substitution – Substitute the character "T" with "t". ("MaTLAB" to "MatLAB")
3 Substitution – Substitute the character "L" with "h". ("MatLAB" to "MathAB")
4 Substitution – Substitute the character "A" with "W". ("MathAB" to "MathWB")
5 Substitution – Substitute the character "B" with "o". ("MathWB" to "MathWo")
6 Insertion – Insert the character "r". ("MathWo" to "MathWor")
7 Insertion – Insert the character "k". ("MathWor" to "MathWork")
8 Insertion – Insert the character "s". ("MathWork" to "MathWorks")

Compute the edit distance and specify the custom substitution cost function
caseInsensitiveSubstituteCost, listed at the end of the example. The custom function
caseInsensitiveSubstituteCost returns 0 if the two inputs are the same or differ only by case
and returns 1 otherwise.

d = editDistance("MATLAB","MathWorks",'SubstituteCost',@caseInsensitiveSubstituteCost)

d = 6

This means the total cost for changing the first string to the second is 6. For example:

1 Substitution (cost 0) – Substitute the character "A" with "a". ("MATLAB" to "MaTLAB")
2 Substitution (cost 0) – Substitute the character "T" with "t". ("MaTLAB" to "MatLAB")
3 Substitution (cost 1) – Substitute the character "L" with "h". ("MatLAB" to "MathAB")
4 Substitution (cost 1) – Substitute the character "A" with "W". ("MathAB" to "MathWB")
5 Substitution (cost 1) – Substitute the character "B" with "o". ("MathWB" to "MathWo")
6 Insert (cost 1) – Insert the character "r". ("MathWo" to "MathWor")
7 Insert (cost 1) – Insert the character "k". ("MathWor" to "MathWork")
8 Insert (cost 1) – Insert the character "s". ("MathWork" to "MathWorks")

Custom Cost Function

The custom function caseInsensitiveSubstituteCost returns 0 if the two inputs are the same
or differ only by case and returns 1 otherwise.

function cost = caseInsensitiveSubstituteCost(grapheme1,grapheme2)

if lower(grapheme1) == lower(grapheme2)
    cost = 0;
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else
    cost = 1;
end

end

Input Arguments
str1 — Source string
string array | character vector | cell array of character vectors

Source string, specified as a string array, character vector, or a cell array of character vectors.

If str1 contains multiple strings, then str2 must be the same size as str1 or scalar.
Data Types: char | string | cell

str2 — Target string
string array | character vector | cell array of character vectors

Target string, specified as a string array, character vector, or a cell array of character vectors.

If str2 contains multiple strings, then str1 must be the same size as str2 or scalar.
Data Types: char | string | cell

document1 — Source document
tokenizedDocument

Source document, specified as a tokenizedDocument array.

If document1 contains multiple documents, then document2 must be the same size as document1
or scalar.

document2 — Target document
tokenizedDocument

Target document, specified as a tokenizedDocument array.

If document2 contains multiple documents, then document1 must be the same size as document2
or scalar.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: editDistance("MATALB","MATLAB",'SwapCost',1) returns the edit distance between
the strings "MATALB" and "MATLAB" and sets the cost to swap two adjacent graphemes to 1.

InsertCost — Cost to insert grapheme or token
1 (default) | nonnegative scalar | function handle

Cost to insert a grapheme or token, specified as the comma-separated pair consisting of
'InsertCost' and a nonnegative scalar or a function handle.
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If 'InsertCost' is a function handle, then the function must accept a single input and return the
cost of inserting the input to the source. For example:

• For string input to editDistance, the cost function must have the form cost =
func(grapheme), where the function returns the cost of inserting grapheme into str1.

• For document input to editDistance, the cost function must have the form cost =
func(token), where the function returns the cost of inserting token into document1.

Example: 'InsertCost',2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
function_handle

DeleteCost — Cost to delete grapheme or token
1 (default) | nonnegative scalar | function handle

Cost to delete grapheme or token, specified as the comma-separated pair consisting of
'DeleteCost' and a nonnegative scalar or a function handle.

If 'DeleteCost' is a function handle, then the function must accept a single input and return the
cost of deleting the input from the source. For example:

• For string input to editDistance, the cost function must have the form cost =
func(grapheme), where the function returns the cost of deleting grapheme from str1.

• For document input to editDistance, the cost function must have the form cost =
func(token), where the function returns the cost of deleting token from document1.

Example: 'DeleteCost',2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
function_handle

SubstituteCost — Cost to substitute grapheme or token
1 (default) | nonnegative scalar | function handle

Cost to substitute a grapheme or token, specified as the comma-separated pair consisting of
'SubstituteCost' and a nonnegative scalar or a function handle.

If 'SubstituteCost' is a function handle, then the function must accept exactly two inputs and
return the cost of substituting the first input with the second in the source. For example:

• For string input to editDistance, the cost function must have the form cost =
func(grapheme1,grapheme2), where the function returns the cost of substituting grapheme1
with grapheme2 in str1.

• For document input to editDistance, the cost function must have the form cost =
func(token1,token2), where the function returns the cost of substituting token1 with token2
in document1.

Example: 'SubstituteCost',2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
function_handle

SwapCost — Cost to swap two adjacent graphemes or tokens
Inf (default) | nonnegative scalar | function handle
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Cost to swap two adjacent graphemes or tokens, specified as the comma-separated pair consisting of
'SwapCost' and a nonnegative scalar or a function handle.

If 'SwapCost' is a function handle, then the function must accept exactly two inputs and return the
cost of swapping the first input with the second in the source. For example:

• For string input to editDistance, the cost function must have the form cost =
func(grapheme1,grapheme2), where the function returns the cost of swapping the adjacent
graphemes grapheme1 and grapheme2 in str1.

• For document input to editDistance, the cost function must have the form cost =
func(token1,token2), where the function returns the cost of swapping the adjacent tokens
token1 and token2 in document1.

Example: 'SwapCost',2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
function_handle

Output Arguments
d — Edit distance
nonnegative scalar

Edit distance, returned as a nonnegative scalar.

Algorithms
Edit Distance

The function, by default, uses the Levenshtein distance: the lowest number of insertions, deletions,
and substitutions required to convert one string to another.

For other commonly used edit distances, use these options:

Distance Description Options
Levenshtein (default) lowest number of insertions,

deletions, and substitutions
Default

Damerau-Levenshtein lowest number of insertions,
deletions, substitutions, and
swaps

'SwapCost',1

Hamming lowest number of substitutions
only

'InsertCost',Inf,'Delete
Cost',Inf

See Also
correctSpelling | editDistanceSearcher | knnsearch | rangesearch | splitGraphemes |
tokenizedDocument

Topics
“Correct Spelling in Documents”
“Create Extension Dictionary for Spelling Correction”
“Create Custom Spelling Correction Function Using Edit Distance Searchers”
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“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”

Introduced in R2019a
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editDistanceSearcher
Edit distance nearest neighbor searcher

Description
An edit distance searcher performs a nearest neighborhood search in a list of known strings, using
edit distance.

Creation
Syntax
eds = editDistanceSearcher(vocabulary,maxDist)
eds = editDistanceSearcher(vocabulary,maxDist,Name,Value)

Description

eds = editDistanceSearcher(vocabulary,maxDist) creates an edit distance searcher and
sets the Vocabulary and MaximumDistance properties. The returned object searches the words in
vocabulary and with maximum edit distance maxDist.

eds = editDistanceSearcher(vocabulary,maxDist,Name,Value) specifies additional
options using one or more name-value pair arguments.

Properties
Vocabulary — Words to compare against
string vector | character vector | cell array of character vectors

Words to compare against, specified as a string vector, character vector, or a cell array of character
vectors.
Data Types: char | string | cell

MaximumDistance — Maximum edit distance
positive scalar

Maximum edit distance, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InsertCost — Cost to insert grapheme
1 (default) | nonnegative scalar | function handle

Cost to insert grapheme, specified as a nonnegative scalar or a function handle.

If InsertCost is a function handle, then the function must accept a single input and return the cost
of inserting the input to the source. The cost function must have the form cost =
func(grapheme), where the function returns the cost of inserting grapheme into the source string.
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If you specify a custom cost function, then the searcher perform exhaustive searching. For large
vocabularies, the functions knnsearch and rangesearch can take a long time to find matches.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
function_handle

DeleteCost — Cost to delete grapheme
1 (default) | nonnegative scalar | function handle

Cost to delete grapheme, specified as a nonnegative scalar or a function handle.

If DeleteCost is a function handle, then the function must accept a single input and return the cost
of deleting the input from the source. The cost function must have the form cost =
func(grapheme), where the function returns the cost of deleting grapheme from the source string.

If you specify a custom cost function, then the searcher perform exhaustive searching. For large
vocabularies, the functions knnsearch and rangesearch can take a long time to find matches.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
function_handle

SubstituteCost — Cost to substitute grapheme
1 (default) | nonnegative scalar | function handle

Cost to substitute grapheme, specified as a nonnegative scalar or a function handle.

If SubstituteCost is a function handle, then the function must accept exactly two inputs and return
the cost of substituting the first input to the second in the source. The cost function must have the
form cost = func(grapheme1,grapheme2), where the function returns the cost of substituting
grapheme1 with grapheme2 in the source.

If you specify a custom cost function, then the searcher perform exhaustive searching. For large
vocabularies, the functions knnsearch and rangesearch can take a long time to find matches.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
function_handle

SwapCost — Cost to swap adjacent graphemes
Inf (default) | nonnegative scalar | function handle

Cost to swap adjacent graphemes, specified as a nonnegative scalar or a function handle.

If SwapCost is a function handle, then the function must accept exactly two inputs and return the
cost of swapping the first input with the second in the source. The cost function must have the form
cost = func(grapheme1,grapheme2), where the function returns the cost of swapping the
adjacent graphemes grapheme1 and grapheme2 in the source.

If you specify a custom cost function, then the searcher perform exhaustive searching. For large
vocabularies, the functions knnsearch and rangesearch can take a long time to find matches.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
function_handle

Object Functions
rangesearch Find nearest neighbors by edit distance range
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knnsearch Find nearest neighbors by edit distance

Examples

Create Edit Distance Searcher

Create an edit distance searcher with a maximum edit distance 3 from the words "MathWorks",
"MATLAB", and "Analytics".

vocabulary = ["MathWorks" "MATLAB" "Analytics"];
eds = editDistanceSearcher(vocabulary,3)

eds = 
  editDistanceSearcher with properties:

         Vocabulary: ["MathWorks"    "MATLAB"    "Analytics"]
    MaximumDistance: 3
         InsertCost: 1
         DeleteCost: 1
     SubstituteCost: 1
           SwapCost: Inf

Create Damerau-Levenshtein Edit Distance Searcher

Create an edit distance searcher using the Damerau-Levenshtein edit distance. The Damerau-
Levenshtein edit distance is the lowest number of insertions, deletions, substitutions, and swaps.

Create the edit distance searcher from the words "MathWorks", "MATLAB", and "Analytics" and
specify a maximum distance of 3. To specify the Damerau-Levenshtein edit distance, set 'SwapCost'
to 1.

vocabulary = ["MathWorks" "MATLAB" "Analytics"];
eds = editDistanceSearcher(vocabulary,3,'SwapCost',1)

eds = 
  editDistanceSearcher with properties:

         Vocabulary: ["MathWorks"    "MATLAB"    "Analytics"]
    MaximumDistance: 3
         InsertCost: 1
         DeleteCost: 1
     SubstituteCost: 1
           SwapCost: 1

Find Nearest Words

Create an edit distance searcher.
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vocabulary = ["MathWorks" "MATLAB" "Simulink"];
eds = editDistanceSearcher(vocabulary,2);

Find the nearest words to "MALTAB" and "MatWorks".

words = ["MALTAB" "MatWorks"];
idx = knnsearch(eds,words)

idx = 2×1

     2
     1

Get the words from the vocabulary using the returned indices.

nearestWords = eds.Vocabulary(idx)

nearestWords = 1x2 string
    "MATLAB"    "MathWorks"

Find Nearest Neighbors in Range

Create an edit distance searcher and specify a maximum edit distance of 3.

vocabulary = ["MathWorks" "MATLAB" "Simulink" "text" "analytics" "analysis"];
maxDist = 3;
eds = editDistanceSearcher(vocabulary,maxDist);

Find the nearest words to "MALTAB" and "MatWorks" with edit distance less than or equal to 1.

words = ["MALTAB" "MatWorks" "analytcs"];
maxDist = 1;
idx = rangesearch(eds,words,maxDist)

idx=3×1 cell array
    {1x0 double}
    {[       1]}
    {[       5]}

For "MALTAB", there are no words in the searcher within the specified range. For "MatWorks" and
"analytics", there is one result. View the corresponding word for "MatWorks" using the returned
index.

nearestWords = eds.Vocabulary(idx{2})

nearestWords = 
"MathWorks"

Find the nearest words to "MALTAB", "MatWorks", and "analytcs" with edit distance less than or
equal to 3 and their corresponding edit distances.

words = ["MALTAB" "MatWorks" "analytcs"];
maxDist = 3;
[idx,d] = rangesearch(eds,words,maxDist)
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idx=3×1 cell array
    {[       2]}
    {[       1]}
    {1x2 double}

d=3×1 cell array
    {[       2]}
    {[       1]}
    {1x2 double}

For both "MALTAB" and "MatWorks", there is one word in the searcher within the specified range.
For "analytcs", there are two results. View the corresponding words for "analytcs" using the
returned indices and their edit distances.

nearestWords = eds.Vocabulary(idx{3})

nearestWords = 1x2 string
    "analytics"    "analysis"

d{3}

ans = 1×2

     1     2

Algorithms
Edit Distance

The function, by default, uses the Levenshtein distance: the lowest number of insertions, deletions,
and substitutions required to convert one string to another.

For other commonly used edit distances, use these options:

Distance Description Options
Levenshtein (default) lowest number of insertions,

deletions, and substitutions
Default

Damerau-Levenshtein lowest number of insertions,
deletions, substitutions, and
swaps

'SwapCost',1

Hamming lowest number of substitutions
only

'InsertCost',Inf,'Delete
Cost',Inf

See Also
correctSpelling | editDistance | knnsearch | rangesearch | splitGraphemes |
tokenizedDocument

Topics
“Correct Spelling in Documents”
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“Create Extension Dictionary for Spelling Correction”
“Create Custom Spelling Correction Function Using Edit Distance Searchers”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”

Introduced in R2019a
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encode
Encode documents as matrix of word or n-gram counts

Syntax
counts = encode(bag,documents)
counts = encode(bag,words)
counts = encode( ___ ,Name,Value)

Description
Use encode to encode an array of tokenized documents as a matrix of word or n-gram counts
according to a bag-of-words or bag-of-n-grams model. To encode documents as vectors or word
indices, use a wordEncoding object.

counts = encode(bag,documents) returns a matrix of frequency counts for documents based
on the bag-of-words or bag-of-n-grams model bag.

counts = encode(bag,words) returns a matrix of frequency counts for a list of words.

counts = encode( ___ ,Name,Value) specifies additional options using one or more name-value
pair arguments.

Examples

Encode Documents as Word Count Matrix

Encode an array of documents as a matrix of word counts.

documents = tokenizedDocument([
    "an example of a short sentence" 
    "a second short sentence"]);
bag = bagOfWords(documents) 

bag = 
  bagOfWords with properties:

          Counts: [2x7 double]
      Vocabulary: [1x7 string]
        NumWords: 7
    NumDocuments: 2

documents = tokenizedDocument([
    "a new sentence" 
    "a second new sentence"])

documents = 
  2x1 tokenizedDocument:

    3 tokens: a new sentence
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    4 tokens: a second new sentence

View the documents encoded as a matrix of word counts. The word "new" does not appear in bag, so
it is not counted.

counts = encode(bag,documents);
full(counts)

ans = 2×7

     0     0     0     1     0     1     0
     0     0     0     1     0     1     1

The columns correspond to the vocabulary of the bag-of-words model.

bag.Vocabulary

ans = 1x7 string
    "an"    "example"    "of"    "a"    "short"    "sentence"    "second"

Encode Words as Word Count Vector

Encode an array of words as a vector of word counts.

documents = tokenizedDocument([
    "an example of a short sentence"
    "a second short sentence"]);
bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [2x7 double]
      Vocabulary: [1x7 string]
        NumWords: 7
    NumDocuments: 2

words = ["another" "example" "of" "a" "short" "example" "sentence"];
counts = encode(bag,words)

counts = 
   (1,2)        2
   (1,3)        1
   (1,4)        1
   (1,5)        1
   (1,6)        1
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Output Document Word Counts in Columns

Encode an array of documents as a matrix of word counts with documents in columns.

documents = tokenizedDocument([
    "an example of a short sentence"
    "a second short sentence"]);
bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [2x7 double]
      Vocabulary: [1x7 string]
        NumWords: 7
    NumDocuments: 2

documents = tokenizedDocument([
    "a new sentence"
    "a second new sentence"])

documents = 
  2x1 tokenizedDocument:

    3 tokens: a new sentence
    4 tokens: a second new sentence

View the documents encoded as a matrix of word counts with documents in columns. The word "new"
does not appear in bag, so it is not counted.

counts = encode(bag,documents,'DocumentsIn','columns');
full(counts)

ans = 7×2

     0     0
     0     0
     0     0
     1     1
     0     0
     1     1
     0     1

Input Arguments
bag — Input bag-of-words or bag-of-n-grams model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a bagOfNgrams
object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

 encode

1-115



Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is a string array or a cell array of character vectors, then it must be
a row vector representing a single document, where each element is a word.

Tip To ensure that the documents are encoded correctly, you must preprocess the input documents
using the same steps as the documents used to create the input model. For an example showing how
to create a function to preprocess text data, see “Prepare Text Data for Analysis”.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.
Data Types: string | char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'DocumentsIn','rows' specifies the orientation of the output documents as rows.

DocumentsIn — Orientation of output documents
'rows' (default) | 'columns'

Orientation of output documents in the frequency count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

• 'rows' – Return a matrix of frequency counts with rows corresponding to documents.
• 'columns' – Return a transposed matrix of frequency counts with columns corresponding to

documents.

Data Types: char

ForceCellOutput — Indicator for forcing output to be returned as cell array
false (default) | true

Indicator for forcing output to be returned as cell array, specified as the comma separated pair
consisting of 'ForceCellOutput' and true or false.
Data Types: logical

Output Arguments
counts — Word or n-gram counts
sparse matrix | cell array of sparse matrices

Word or n-gram counts, returned as a sparse matrix of nonnegative integers or a cell array of sparse
matrices.
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If bag is a non-scalar array or 'ForceCellOutput' is true, then the function returns the outputs as
a cell array of sparse matrices. Each element in the cell array is matrix of word or n-gram counts of
the corresponding element of bag.

See Also
bagOfNgrams | bagOfWords | tfidf | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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erasePunctuation
Erase punctuation from text and documents

Syntax
newStr = erasePunctuation(str)
newDocuments = erasePunctuation(documents)
newDocuments = erasePunctuation(documents,'TokenTypes',types)

Description
newStr = erasePunctuation(str) erases punctuation and symbols from the elements of str.
The function removes characters that belong to the Unicode punctuation or symbol classes.

newDocuments = erasePunctuation(documents) erases punctuation and symbols from
documents. If a word is empty after removing punctuation and symbol characters, then the function
removes it. For tokenized document input, the function erases punctuation from tokens with type
'punctuation' and 'other'. For example, the function does not erase punctuation and symbol
characters from URLs and email addresses.

newDocuments = erasePunctuation(documents,'TokenTypes',types) erases punctuation
and symbols from only the specified token types.

Examples

Erase Punctuation from Text

Erase the punctuation from the text in str.

str = "it's one and/or two.";
newStr = erasePunctuation(str)

newStr = 
"its one andor two"

To insert a space where the "/" symbol is, first use the replace function.

newStr = replace(str,"/"," ")

newStr = 
"it's one and or two."

newStr = erasePunctuation(newStr)

newStr = 
"its one and or two"
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Erase Punctuation from Documents

Erase the punctuation from an array of documents.

documents = tokenizedDocument([ ...
    "An example of a short sentence." 
    "Another example... with a URL: https://www.mathworks.com"])

documents = 
  2x1 tokenizedDocument:

     7 tokens: An example of a short sentence .
    10 tokens: Another example . . . with a URL : https://www.mathworks.com

newDocuments = erasePunctuation(documents)

newDocuments = 
  2x1 tokenizedDocument:

    6 tokens: An example of a short sentence
    6 tokens: Another example with a URL https://www.mathworks.com

Here, the function does not erase the punctuation symbols from the URL.

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short sentence."]
Data Types: string | char | cell

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

types — Token types to erase punctuation from
{'punctuation','other'} (default) | string array | character vector | cell array of character
vectors

Token types to erase punctuation from, specified as a character vector, string array, or a cell array of
character vectors containing one or more token types (including custom token types).

The tokenizedDocument and addTypeDetails functions automatically detect the following token
types:

• 'letters' – string of letter characters only
• 'digits' – string of digits only
• 'punctuation' – string of punctuation and symbol characters only
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• 'email-address' – detected email address
• 'web-address' – detected web address
• 'hashtag' – detected hashtag (starts with "#" character followed by a letter)
• 'at-mention' – detected at-mention (starts with "@" character)
• 'emoticon' – detected emoticon
• 'emoji' – detected emoji
• 'other' – does not belong to the previous types and is not a custom type

To specify your own custom token types when tokenizing, use the 'CustomTokens' or
'RegularExpressions' options in tokenizedDocument. If you do not specify a type for a custom
token, then the software sets the corresponding token type to 'custom'.
Data Types: string | char | cell

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character vectors. str and
newStr have the same data type.

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

More About
Unicode Character Categories

Each Unicode character is assigned a category. The following table summarizes the Unicode
punctuation and symbol categories and provides an example character from each category:

Category Category Code Number of Characters Example Character
Punctuation, Connector [Pc] 10 _
Punctuation, Dash [Pd] 24 -
Punctuation, Close [Pe] 73 )
Punctuation, Final
quote

[Pf] 10 ”

Punctuation, Initial
quote

[Pi] 12 “

Punctuation, Other [Po] 566 !
Punctuation, Open [Ps] 75 (
Symbol, Currency [Sc] 54 $
Symbol, Modifier [Sk] 121 ^
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Category Category Code Number of Characters Example Character
Symbol, Math [Sm] 948 +
Symbol, Other [So] 5855 ¦

For more information, see [1].

Tips
• For string input, erasePunctuation removes punctuation characters from URLs and HTML

tags. This behavior can prevent the functions eraseTags, eraseURLs, and
decodeHTMLEntities from working as expected. If you want to use these functions to
preprocess your text, then use these functions before using erasePunctuation.

Compatibility Considerations
erasePunctuation skips complex tokens
Behavior changed in R2018b

Starting in R2018b, for tokenizedDocument input, erasePunctuation, by default, erases
punctuation and symbol characters from tokens with type 'punctuation' or 'other' only. This
behavior prevents the function from affecting complex tokens such as URLs and email-addresses.

In previous versions, erasePunctuation erases punctuation characters from all tokens. To
reproduce the behavior, use the 'TokenTypes' name-value pair.

References
[1] Unicode Character Categories. https://www.fileformat.info/info/unicode/category/index.htm

See Also
decodeHTMLEntities | eraseTags | eraseURLs | lower | tokenizedDocument | upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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eraseTags
Erase HTML and XML tags from text

Syntax
newStr = eraseTags(str)

Description
newStr = eraseTags(str) erases HTML and XML comments and tags from the elements of str.

The function erases comments and tags with tag name a, abbr, acronym, b, bdi, bdo, big, code,
del, dfn, em, font, i, ins, kbd, mark, rp, rt, ruby, s, small, span, strike, strong sub, sup,
tt, u, var and wbr, and replaces all other tags with a space.

The function does not remove HTML and XML elements (the tags as well anything between start and
end tags). For example, eraseTags("x<a>y</a>") returns the string "xy". It only removes the
tags <a> and </a>, and does not remove the element <a>y</a>.

Examples

Erase HTML and XML Tags and Comments

Erase the tags from some HTML code. The function replaces the <br> tag with a space.

htmlCode = "one.<br>two";
newStr = eraseTags(htmlCode)

newStr = 
"one. two"

Erase the tags from some XML code. The function removes the <sub> tags and does not replace them
with a space.

xmlCode = "H<sub>2</sub>O";
newStr = eraseTags(xmlCode)

newStr = 
"H2O"

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short sentence."]
Data Types: string | char | cell
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Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character vectors. str and
newStr have the same data type.

See Also
decodeHTMLEntities | erasePunctuation | eraseURLs | lower | tokenizedDocument | upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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eraseURLs
Erase HTTP and HTTPS URLs from text

Syntax
newStr = eraseURLs(str)

Description
newStr = eraseURLs(str) erases HTTP and HTTPS URLs from the elements of str.

Examples

Erase URL from Text

Erase the URL from the text in str.

str = "For more information, see https://www.mathworks.com";
newStr = eraseURLs(str)

newStr = 
"For more information, see "

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short sentence."]
Data Types: string | char | cell

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character vectors. str and
newStr have the same data type.

See Also
decodeHTMLEntities | erasePunctuation | eraseTags | lower | tokenizedDocument | upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
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Introduced in R2017b
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extractFileText
Read text from PDF, Microsoft Word, HTML, and plain text files

Syntax
str = extractFileText(filename)
str = extractFileText(filename,Name,Value)

Description
str = extractFileText(filename) reads the text data from a file as a string.

str = extractFileText(filename,Name,Value) specifies additional options using one or more
name-value pair arguments.

Examples

Extract Text Data from Text File

Extract the text from sonnets.txt using extractFileText. The file sonnets.txt contains
Shakespeare's sonnets in plain text.

str = extractFileText("sonnets.txt");

View the first sonnet.

i = strfind(str,"I");
ii = strfind(str,"II");
start = i(1);
fin = ii(1);
extractBetween(str,start,fin-1)

ans = 
    "I
     
       From fairest creatures we desire increase,
       That thereby beauty's rose might never die,
       But as the riper should by time decease,
       His tender heir might bear his memory:
       But thou, contracted to thine own bright eyes,
       Feed'st thy light's flame with self-substantial fuel,
       Making a famine where abundance lies,
       Thy self thy foe, to thy sweet self too cruel:
       Thou that art now the world's fresh ornament,
       And only herald to the gaudy spring,
       Within thine own bud buriest thy content,
       And tender churl mak'st waste in niggarding:
         Pity the world, or else this glutton be,
         To eat the world's due, by the grave and thee.
     
       "
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Extract Text Data from PDF

Extract the text from exampleSonnets.pdf using extractFileText. The file
exampleSonnets.pdf contains Shakespeare's sonnets in a PDF file.

str = extractFileText("exampleSonnets.pdf");

View the second sonnet.

ii = strfind(str,"II");
iii = strfind(str,"III");
start = ii(1);
fin = iii(1);
extractBetween(str,start,fin-1)

ans = 
    "II 
      
       When forty winters shall besiege thy brow, 
       And dig deep trenches in thy beauty's field, 
       Thy youth's proud livery so gazed on now, 
       Will be a tatter'd weed of small worth held: 
       Then being asked, where all thy beauty lies, 
       Where all the treasure of thy lusty days; 
       To say, within thine own deep sunken eyes, 
       Were an all-eating shame, and thriftless praise. 
       How much more praise deserv'd thy beauty's use, 
       If thou couldst answer 'This fair child of mine 
       Shall sum my count, and make my old excuse,' 
       Proving his beauty by succession thine! 
         This were to be new made when thou art old, 
         And see thy blood warm when thou feel'st it cold. 
      
       "

Extract the text from pages 3, 5, and 7 of the PDF file.

pages = [3 5 7];
str = extractFileText("exampleSonnets.pdf", ...
    'Pages',pages);

View the 10th sonnet.

x = strfind(str,"X");
xi = strfind(str,"XI");
start = x(1);
fin = xi(1);
extractBetween(str,start,fin-1)

ans = 
    "X 
      
       Is it for fear to wet a widow's eye, 
       That thou consum'st thy self in single life? 
       Ah! if thou issueless shalt hap to die, 
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       The world will wail thee like a makeless wife; 
       The world will be thy widow and still weep 
       That thou no form of thee hast left behind, 
       When every private widow well may keep 
       By children's eyes, her husband's shape in mind: 
       Look! what an unthrift in the world doth spend 
       Shifts but his place, for still the world enjoys it; 
       But beauty's waste hath in the world an end, 
       And kept unused the user so destroys it. 
         No love toward others in that bosom sits 
         That on himself such murd'rous shame commits. 
      
       X 
      
       For shame! deny that thou bear'st love to any, 
       Who for thy self art so unprovident. 
       Grant, if thou wilt, thou art belov'd of many, 
       But that thou none lov'st is most evident: 
       For thou art so possess'd with murderous hate, 
       That 'gainst thy self thou stick'st not to conspire, 
       Seeking that beauteous roof to ruinate 
       Which to repair should be thy chief desire. 
     
      
       "

Import Text from Multiple Files Using a File Datastore

If your text data is contained in multiple files in a folder, then you can import the text data into
MATLAB using a file datastore.

Create a file datastore for the example sonnet text files. The examples sonnets have file names
"exampleSonnetN.txt", where N is the number of the sonnet. Specify the read function to be
extractFileText.

readFcn = @extractFileText;
fds = fileDatastore('exampleSonnet*.txt','ReadFcn',readFcn)

fds = 
  FileDatastore with properties:

                       Files: {
                              ' ...\ib9D0363\0\tp35d6fb40\textanalytics-ex73762432\exampleSonnet1.txt';
                              ' ...\ib9D0363\0\tp35d6fb40\textanalytics-ex73762432\exampleSonnet2.txt';
                              ' ...\ib9D0363\0\tp35d6fb40\textanalytics-ex73762432\exampleSonnet3.txt'
                               ... and 1 more
                              }
                     Folders: {
                              ' ...\Bdoc20a_1326390_8984\ib9D0363\0\tp35d6fb40\textanalytics-ex73762432'
                              }
                 UniformRead: 0
                    ReadMode: 'file'
                   BlockSize: Inf
                  PreviewFcn: @extractFileText
      SupportedOutputFormats: [1x16 string]
                     ReadFcn: @extractFileText
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    AlternateFileSystemRoots: {}

Create an empty bag-of-words model.

bag = bagOfWords

bag = 
  bagOfWords with properties:

          Counts: []
      Vocabulary: [1x0 string]
        NumWords: 0
    NumDocuments: 0

Loop over the files in the datastore and read each file. Tokenize the text in each file and add the
document to bag.

while hasdata(fds)
    str = read(fds);
    document = tokenizedDocument(str);
    bag = addDocument(bag,document);
end

View the updated bag-of-words model.

bag

bag = 
  bagOfWords with properties:

          Counts: [4x276 double]
      Vocabulary: [1x276 string]
        NumWords: 276
    NumDocuments: 4

Extract Text from HTML

To extract text data directly from HTML code, use extractHTMLText and specify the HTML code as
a string.

code = "<html><body><h1>THE SONNETS</h1><p>by William Shakespeare</p></body></html>";
str = extractHTMLText(code)

str = 
    "THE SONNETS
     
     by William Shakespeare"

Input Arguments
filename — Name of file
string scalar | character vector
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Name of the file, specified as a string scalar or character vector.
Data Types: string | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Pages',[1 3 5] specifies to read pages 1, 3, and 5 from a PDF file.

Encoding — Character encoding
'auto' (default) | 'UTF-8' | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

Character encoding to use, specified as the comma-separated pair consisting of 'Encoding' and a
character vector or a string scalar. The character vector or string scalar must contain a standard
character encoding scheme name such as the following.

'Big5' 'ISO-8859-1' 'windows-874'
'Big5-HKSCS' 'ISO-8859-2' 'windows-949'
'CP949' 'ISO-8859-3' 'windows-1250'
'EUC-KR' 'ISO-8859-4' 'windows-1251'
'EUC-JP' 'ISO-8859-5' 'windows-1252'
'EUC-TW' 'ISO-8859-6' 'windows-1253'
'GB18030' 'ISO-8859-7' 'windows-1254'
'GB2312' 'ISO-8859-8' 'windows-1255'
'GBK' 'ISO-8859-9' 'windows-1256'
'IBM866' 'ISO-8859-11' 'windows-1257'
'KOI8-R' 'ISO-8859-13' 'windows-1258'
'KOI8-U' 'ISO-8859-15' 'US-ASCII'
 'Macintosh' 'UTF-8'
 'Shift_JIS'  

If you do not specify an encoding scheme, then the function performs heuristic auto-detection for the
encoding to use. If these heuristics fail, then you must specify one explicitly.

This option only applies when the input is a plain text file.
Data Types: char | string

ExtractionMethod — Extraction method
'tree' (default) | 'article' | 'all-text'

Extraction method, specified as the comma-separated pair consisting of 'ExtractionMethod' and
one of the following:
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Option Description
'tree' Analyze the DOM tree and text contents, then

extract a block of paragraphs.
'article' Detect article text and extract a block of

paragraphs.
'all-text' Extract all text in the HTML body, except for

scripts and CSS styles.

This option supports HTML file input only.

Password — Password to open PDF file
character vector | string scalar

Password to open PDF file, specified as the comma-separated pair consisting of 'Password' and a
character vector or a string scalar. This option only applies if the input file is a PDF.
Example: 'Password','skroWhtaM'
Data Types: char | string

Pages — Pages to read from PDF file
vector of positive integers

Pages to read from PDF file, specified as the comma-separated pair consisting of 'Pages' and a
vector of positive integers. This option only applies if the input file is a PDF file. The function, by
default, reads all pages from the PDF file.
Example: 'Pages',[1 3 5]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Tips
• To read text directly from HTML code, use extractHTMLText.

See Also
extractHTMLText | readPDFFormData | tokenizedDocument | writeTextDocument

Topics
“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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extractHTMLText
Extract text from HTML

Syntax
str = extractHTMLText(code)
str = extractHTMLText(tree)
str = extractHTMLText( ___ ,'ExtractionMethod',ex)

Description
str = extractHTMLText(code) parses the HTML code in code and extracts the text.

str = extractHTMLText(tree) extracts the text from an HTML tree.

str = extractHTMLText( ___ ,'ExtractionMethod',ex) also specifies the extraction method
to use.

Examples

Extract Text from HTML

To extract text data directly from HTML code, use extractHTMLText and specify the HTML code as
a string.

code = "<html><body><h1>THE SONNETS</h1><p>by William Shakespeare</p></body></html>";
str = extractHTMLText(code)

str = 
    "THE SONNETS
     
     by William Shakespeare"

Extract Text from Website

To extract the text data from a web page, first use the webread function to read the HTML code.
Then use the extractHTMLText function on the returned code.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);
str = extractHTMLText(code)

str = 
    'Text Analytics Toolbox™ provides algorithms and visualizations for preprocessing, analyzing, and modeling text data. Models created with the toolbox can be used in applications such as sentiment analysis, predictive maintenance, and topic modeling.
     
     Text Analytics Toolbox includes tools for processing raw text from sources such as equipment logs, news feeds, surveys, operator reports, and social media. You can extract text from popular file formats, preprocess raw text, extract individual words, convert text into numerical representations, and build statistical models.
     
     Using machine learning techniques such as LSA, LDA, and word embeddings, you can find clusters and create features from high-dimensional text datasets. Features created with Text Analytics Toolbox can be combined with features from other data sources to build machine learning models that take advantage of textual, numeric, and other types of data.'
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Find Elements in HTML Tree

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using the
webread function.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are nodes with element
name "A".

selector = "A";
subtrees = findElement(tree,selector);

View the first few subtrees.

subtrees(1:10)

ans = 
  10×1 htmlTree:

    <A class="svg_link navbar-brand" href="https://www.mathworks.com?s_tid=gn_logo"><IMG alt="MathWorks" class="mw_logo" src="/images/responsive/global/pic-header-mathworks-logo.svg"/></A>
    <A href="https://www.mathworks.com/products.html?s_tid=gn_ps">Products</A>
    <A href="https://www.mathworks.com/solutions.html?s_tid=gn_sol">Solutions</A>
    <A href="https://www.mathworks.com/academia.html?s_tid=gn_acad">Academia</A>
    <A href="https://www.mathworks.com/support.html?s_tid=gn_supp">Support</A>
    <A href="https://www.mathworks.com/matlabcentral/?s_tid=gn_mlc">Community</A>
    <A href="https://www.mathworks.com/company/events.html?s_tid=gn_ev">Events</A>
    <A href="https://www.mathworks.com/company/aboutus/contact_us.html?s_tid=gn_cntus">Contact Us</A>
    <A href="https://www.mathworks.com/products/get-matlab.html?s_tid=gn_getml">Get MATLAB</A>
    <A class="svg_link pull-left" href="https://www.mathworks.com?s_tid=gn_logo"><IMG alt="MathWorks" class="mw_logo" src="/images/responsive/global/pic-header-mathworks-logo.svg"/></A>

Extract the text from the subtrees using extractHTMLText. The result contains the link text from
each link on the page.

str = extractHTMLText(subtrees);
str(1:10)

ans = 10×1 string
    ""
    "Products"
    "Solutions"
    "Academia"
    "Support"
    "Community"
    "Events"
    "Contact Us"
    "Get MATLAB"
    ""
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Input Arguments
code — HTML code
string array | character vector | cell array of character vectors

HTML code, specified as a string array, a character vector, or a cell array of character vectors.

Tip

• To read HTML code from a web page, use webread.
• To extract text from an HTML file, use extractFileText.

Example: "<a href='https://www.mathworks.com'>MathWorks</a>"
Data Types: char | string | cell

tree — HTML tree
htmlTree array

HTML tree, specified as an htmlTree array.

ex — Extraction method
'tree' (default) | 'article' | 'all-text'

Extraction method, specified as one of the following:

Option Description
'tree' Analyze the DOM tree and text contents, then

extract a block of paragraphs.
'article' Detect article text and extract a block of

paragraphs.
'all-text' Extract all text in the HTML body, except for

scripts and CSS styles.

See Also
extractFileText | htmlTree | readPDFFormData | tokenizedDocument | webread |
writeTextDocument

Topics
“Parse HTML and Extract Text Content”
“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2018a
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extractSummary
Extract summary from documents

Syntax
summary = extractSummary(documents)
[summary,scores] = extractSummary(documents)
[summary,scores] = extractSummary(documents,Name,Value)

Description
summary = extractSummary(documents) chooses a subset of the input documents to serve as a
summary, and returns them as a tokenizedDocument array.

[summary,scores] = extractSummary(documents) also returns the importance scores used for
selecting the summary documents. In this case, scores(i) represents the score for summary(i).

[summary,scores] = extractSummary(documents,Name,Value) specifies additional options
using one or more name-value pair arguments.

Examples

Summarize Documents

Create an array of tokenized documents.

str = [
    "The quick brown fox jumped over the lazy dog."
    "The fox jumped over the dog."
    "The lazy dog saw a fox jumping."
    "There seem to be animals jumping other animals."
    "There are quick animals and lazy animals"];
documents = tokenizedDocument(str);

Extract a summary of the documents using the extractSummary function. The function, by default,
chooses 1/10 of the input documents, rounding up.

summary = extractSummary(documents)

summary = 
  tokenizedDocument:

   10 tokens: The quick brown fox jumped over the lazy dog .

To specify a larger summary, use the 'SummarySize' option. Extract a three-document summary.

summary = extractSummary(documents,'SummarySize',3)

summary = 
  3x1 tokenizedDocument:
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    10 tokens: The quick brown fox jumped over the lazy dog .
     7 tokens: The fox jumped over the dog .
     9 tokens: There seem to be animals jumping other animals .

Evaluate Document Importance

Create an array of tokenized documents.

str = [
    "The quick brown fox jumped over the lazy dog."
    "The fox jumped over the dog."
    "The lazy dog saw a fox jumping."
    "There seem to be animals jumping over other animals."
    "There are quick animals and lazy animals"];
documents = tokenizedDocument(str);

Extract a three-document summary. The second output scores contains the summary document
importance scores.

[summary,scores] = extractSummary(documents,'SummarySize',3)

summary = 
  3x1 tokenizedDocument:

    10 tokens: The quick brown fox jumped over the lazy dog .
    10 tokens: There seem to be animals jumping over other animals .
     7 tokens: The fox jumped over the dog .

scores = 3×1

    0.2426
    0.2174
    0.1911

Visualize the scores in a bar chart.

figure
bar(scores)
xlabel("Summary Document")
ylabel("Score")
title("Summary Document Importance")
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Sentence Level Summarization

To summarize a single document, split the document into an array of sentences, and use the
extractSummary function.

Create a string scalar containing the document.

str = ...
    "There is a quick fox. The fox is brown. There is a dog which " + ...
    "is lazy. The dog is very lazy. The fox jumped over the dog. " + ...
    "The quick brown fox jumped over the lazy dog.";

Split the string into sentences using the splitSentences function.

str = splitSentences(str)

str = 6×1 string
    "There is a quick fox."
    "The fox is brown."
    "There is a dog which is lazy."
    "The dog is very lazy."
    "The fox jumped over the dog."
    "The quick brown fox jumped over the lazy dog."
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Create a tokenized document array containing the sentences.

documents = tokenizedDocument(str)

documents = 
  6×1 tokenizedDocument:

     6 tokens: There is a quick fox .
     5 tokens: The fox is brown .
     8 tokens: There is a dog which is lazy .
     6 tokens: The dog is very lazy .
     7 tokens: The fox jumped over the dog .
    10 tokens: The quick brown fox jumped over the lazy dog .

Extract a summary from the sentences using the extractSummary function. To return a summary
withthree documents, set the 'SummarySize' option to 3.To ensure the summary documents appear
in the same order as the input documents, set the 'OrderBy' option to 'position'.

summary = extractSummary(documents,'SummarySize',3,'OrderBy','position')

summary = 
  3×1 tokenizedDocument:

     6 tokens: There is a quick fox .
     7 tokens: The fox jumped over the dog .
    10 tokens: The quick brown fox jumped over the lazy dog .

To reconstruct the sentences into a single document, convert the documents to string using the
joinWords function and join the sentences using the join function.

sentences = joinWords(summary);
summaryStr = join(sentences)

summaryStr = 
"There is a quick fox . The fox jumped over the dog . The quick brown fox jumped over the lazy dog ."

To remove the surrounding punctuation characters, use the replace function.

punctuationRight = ["." "," "’" ")" ":" "?" "!"];
summaryStr = replace(summaryStr," " + punctuationRight,punctuationRight);

punctuationLeft = ["(" "‘"];
summaryStr = replace(summaryStr,punctuationLeft + " ",punctuationLeft)

summaryStr = 
"There is a quick fox. The fox jumped over the dog. The quick brown fox jumped over the lazy dog."

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: extractSummary(documents,'ScoringMethod','lexrank') extracts a summary
from documents and sets the scoring method option to 'lexrank'.

ScoringMethod — Scoring method
'textrank' (default) | 'lexrank' | 'mmr'

Scoring method used for extractive summarization, specified as the comma-separated pair consisting
of 'ScoringMethod' and one of the following:

• 'textrank' – Use the TextRank algorithm.
• 'lexrank' – Use the LexRank algorithm.
• 'mmr' – Use the MMR algorithm.

Query — Query document for MMR scoring
tokenizedDocument scalar | string array | cell array of character vectors

Query document for MMR scoring, specified as the comma-separated pair consisting of 'Query' and
a tokenizedDocument scalar, a string array of words, or a cell array of character vectors. If
'Query' not a tokenizedDocument scalar, then it must be a row vector representing a single
document, where each element is a word.

This option only has an effect when 'ScoringMethod' is 'mmr'.

SummarySize — Size of summary
0.1 (default) | scalar in the range (0,1) | positive integer | Inf

Size of summary, specified as the comma-separated pair consisting of 'SummarySize' and one of the
following:

• Scalar in the range (0,1) – Extract the specified proportion of input documents, rounding up. In
this case, the number of summary documents ceil(SummarySize*numDocuments), where
numDocuments is the number of input documents.

• Positive integer – Extract a summary with the specified number of documents. If SummarySize is
greater than or equal to the number of input documents, then the function returns the input
documents sorted according to the 'OrderBy' option.

Inf – Return the input documents sorted according to the 'OrderBy' option.

Data Types: double

OrderBy — Order of documents in summary
'score' (default) | 'position'

Order of documents in summary, specified as the comma-separated pair consisting of 'OrderBy' and
one of the following:

• 'score' – Order documents by their score according to the 'ScoringMethod' option.
• 'position' – Maintain the document order from the input.
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Output Arguments
summary — Extracted summary
tokenizedDocument array

Extracted summary, returned as a tokenizedDocument array. The summary is a subset of
documents, and is sorted according to the 'OrderBy' option.

scores — Summary document scores
vector

Summary document scores, returned as a vector, where scores(i) is the score of the jth summary
document according to the 'ScoringMethod' option. The scores are sorted according to the
'OrderBy' option.

See Also
bleuEvaluationScore | bm25Similarity | cosineSimilarity | lexrankScores | mmrScores
| rougeEvaluationScore | textrankScores | tokenizedDocument

Topics
“Sequence-to-Sequence Translation Using Attention”

Introduced in R2020a
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fastTextWordEmbedding
Pretrained fastText word embedding

Syntax
emb = fastTextWordEmbedding

Description
emb = fastTextWordEmbedding returns a 300-dimensional pretrained word embedding for 1
million English words.

This function requires the Text Analytics Toolbox Model for fastText English 16 Billion Token Word
Embedding support package. If this support package is not installed, the function provides a
download link.

Examples

Download fastText Support Package

Download and install the Text Analytics Toolbox Model for fastText English 16 Billion Token Word
Embedding support package.

Type fastTextWordEmbedding at the command line.

fastTextWordEmbedding

If the Text Analytics Toolbox Model for fastText English 16 Billion Token Word Embedding support
package is not installed, then the function provides a link to the required support package in the Add-
On Explorer. To install the support package, click the link, and then click Install. Check that the
installation is successful by typing emb = fastTextWordEmbedding at the command line.

emb = fastTextWordEmbedding

emb = 

  wordEmbedding with properties:

     Dimension: 300
    Vocabulary: [1×1000000 string]

If the required support package is installed, then the function returns a wordEmbedding object.

Map Words to Vectors and Back

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.
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emb = fastTextWordEmbedding

emb = 
  wordEmbedding with properties:

     Dimension: 300
    Vocabulary: [1×1000000 string]

Map the words "Italy", "Rome", and "Paris" to vectors using word2vec.

italy = word2vec(emb,"Italy");
rome = word2vec(emb,"Rome");
paris = word2vec(emb,"Paris");

Map the vector italy - rome + paris to a word using vec2word.

word = vec2word(emb,italy - rome + paris)

word = 
"France"

Convert Documents to Sequences of Word Vectors

Convert an array of tokenized documents to sequences of word vectors using a pretrained word
embedding.

Load a pretrained word embedding using the fastTextWordEmbedding function. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding
support package. If this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Load the factory reports data and create a tokenizedDocument array.

filename = "factoryReports.csv";
data = readtable(filename,'TextType','string');
textData = data.Description;
documents = tokenizedDocument(textData);

Convert the documents to sequences of word vectors using doc2sequence. The doc2sequence
function, by default, left-pads the sequences to have the same length. When converting large
collections of documents using a high-dimensional word embedding, padding can require large
amounts of memory. To prevent the function from padding the data, set the 'PaddingDirection'
option to 'none'. Alternatively, you can control the amount of padding using the 'Length' option.

sequences = doc2sequence(emb,documents,'PaddingDirection','none');

View the sizes of the first 10 sequences. Each sequence is D-by-S matrix, where D is the embedding
dimension, and S is the number of word vectors in the sequence.

sequences(1:10)

ans=10×1 cell array
    {300×10 single}
    {300×11 single}
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    {300×11 single}
    {300×6  single}
    {300×5  single}
    {300×10 single}
    {300×8  single}
    {300×9  single}
    {300×7  single}
    {300×13 single}

Output Arguments
emb — Pretrained word embedding
wordEmbedding object

Pretrained word embedding, returned as a wordEmbedding object.

See Also
doc2sequence | isVocabularyWord | readWordEmbedding | tokenizedDocument |
trainWordEmbedding | vec2word | word2vec | wordEmbedding | wordEmbeddingLayer |
wordEncoding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2018a
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findElement
Find elements in HTML tree

Syntax
subtrees = findElement(tree,selector)

Description
subtrees = findElement(tree,selector) returns the elements in tree matching the CSS
selector.

Examples

Find Elements in HTML Tree

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using the
webread function.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are nodes with element
name "A".

selector = "A";
subtrees = findElement(tree,selector);

View the first few subtrees.

subtrees(1:10)

ans = 
  10×1 htmlTree:

    <A class="svg_link navbar-brand" href="https://www.mathworks.com?s_tid=gn_logo"><IMG alt="MathWorks" class="mw_logo" src="/images/responsive/global/pic-header-mathworks-logo.svg"/></A>
    <A href="https://www.mathworks.com/products.html?s_tid=gn_ps">Products</A>
    <A href="https://www.mathworks.com/solutions.html?s_tid=gn_sol">Solutions</A>
    <A href="https://www.mathworks.com/academia.html?s_tid=gn_acad">Academia</A>
    <A href="https://www.mathworks.com/support.html?s_tid=gn_supp">Support</A>
    <A href="https://www.mathworks.com/matlabcentral/?s_tid=gn_mlc">Community</A>
    <A href="https://www.mathworks.com/company/events.html?s_tid=gn_ev">Events</A>
    <A href="https://www.mathworks.com/company/aboutus/contact_us.html?s_tid=gn_cntus">Contact Us</A>
    <A href="https://www.mathworks.com/products/get-matlab.html?s_tid=gn_getml">Get MATLAB</A>
    <A class="svg_link pull-left" href="https://www.mathworks.com?s_tid=gn_logo"><IMG alt="MathWorks" class="mw_logo" src="/images/responsive/global/pic-header-mathworks-logo.svg"/></A>
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Extract the text from the subtrees using extractHTMLText. The result contains the link text from
each link on the page.

str = extractHTMLText(subtrees);
str(1:10)

ans = 10×1 string
    ""
    "Products"
    "Solutions"
    "Academia"
    "Support"
    "Community"
    "Events"
    "Contact Us"
    "Get MATLAB"
    ""

Input Arguments
tree — HTML tree
scalar htmlTree object

HTML tree, specified as a scalar htmlTree object.

selector — CSS selector
string scalar | character vector

CSS selector, specified as a string scalar or a character vector. For more information, see “CSS
Selectors” on page 1-146.

Output Arguments
subtrees — Matching HTML subtrees
htmlTree array

Matching HTML subtrees, returned as an htmlTree array.

More About
HTML Elements

A typical HTML element contains the following components:

• Element name – Name of the HTML tag. The element name corresponds to the Name property of
the HTML tree.

• Attributes – Additional information about the tag. HTML attributes have the form name="value",
where name and value denote the attribute name and value respectively. The attributes appear
inside the opening HTML tag. To get the attribute values from an HTML tree, use getAttribute.

• Content – Element content. The content appears between opening and closing HTML tags. The
content can be text data or nested HTML elements. To extract the text from an htmlTree object,
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use extractHTMLText. To get the nested HTML elements of an htmlTree object, use the
Children property.

For example, the HTML element <a href="https://www.mathworks.com">Home</a> comprises
the following components:

Component Value Description
Element name a Element is a hyperlink
Attribute Attribute name href Hyperlink reference

Attribute value "https://
www.mathworks.com"

Hyperlink reference
value

Content Home Text to display

CSS Selectors

CSS selectors specify patterns to match elements in a tree.

This table shows some examples showing how to extract different HTML elements from an HTML
tree:

Task CSS Selector Example
Find all paragraph (<p>)
elements.

"p" findElement(tree,"p")

Find all paragraph (<p>) and
list item (<li>) elements.

"p,li" findElement(tree,"p,li")

Find all paragraph (<p>)
elements that are inside table
(<table>) elements.

"table p" findElement(tree,"table
p")

Find all hyperlink (<a>)
elements with hyperlink
reference attribute (href)
values ending with ".pdf".

"a[href$="".pdf""]" findElement(tree,"a[href
$="".pdf""]")

Find all paragraph (<p>)
elements that are the first child
of their parent.

"p:first-child" findElement(tr,"p:first-
child")

Find all paragraph (<p>)
elements that are the first
paragraph element of their
parent.

"p:first-of-type" findElement(tr,"p:first-
of-type")

Find all emphasis (<em>)
elements where the parent is a
paragraph (<p>) element.

"p > em" findElement(tr,"p > em")

Find all paragraph (<p>)
elements appearing immediately
after a heading 1 (<h1>)
element

"h1 + p" findElement(tr,"h1 + p")

Find all empty elements. ":empty" findElement(tr,":empty")

1 Functions

1-146



Task CSS Selector Example
Find all nonempty label
(<label>) elements.

"label:not(:empty)" findElement(tr,"label:no
t(:empty)")

The findElement function supports all of CSS level 3, except for the selectors ":lang",
":checked", ":link", ":active", ":hover", ":focus", ":target", ":enabled", and
":disabled".

For more information about CSS selectors, see [1].

References
[1] CSS Selector Reference. https://www.w3schools.com/cssref/css_selectors.asp

See Also
extractFileText | extractHTMLText | getAttribute | htmlTree | ismissing |
readPDFFormData | tokenizedDocument

Topics
“Parse HTML and Extract Text Content”
“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2018b
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fitlda
Fit latent Dirichlet allocation (LDA) model

Syntax
mdl = fitlda(bag,numTopics)
mdl = fitlda(counts,numTopics)
mdl = fitlda( ___ ,Name,Value)

Description
A latent Dirichlet allocation (LDA) model is a topic model which discovers underlying topics in a
collection of documents and infers word probabilities in topics. If the model was fit using a bag-of-n-
grams model, then the software treats the n-grams as individual words.

mdl = fitlda(bag,numTopics) fits an LDA model with numTopics topics to the bag-of-words or
bag-of-n-grams model bag.

mdl = fitlda(counts,numTopics) fits an LDA model to the documents represented by a matrix
of frequency counts.

mdl = fitlda( ___ ,Name,Value) specifies additional options using one or more name-value pair
arguments.

Examples

Fit LDA Model

To reproduce the results in this example, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
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      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154

Fit an LDA model with four topics.

numTopics = 4;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.162168 seconds.
=====================================================================================
| Iteration  |  Time per  |  Relative  |  Training  |     Topic     |     Topic     |
|            | iteration  | change in  | perplexity | concentration | concentration |
|            | (seconds)  |   log(L)   |            |               |   iterations  |
=====================================================================================
|          0 |       0.00 |            |  1.215e+03 |         1.000 |             0 |
|          1 |       0.02 | 1.0482e-02 |  1.128e+03 |         1.000 |             0 |
|          2 |       0.02 | 1.7190e-03 |  1.115e+03 |         1.000 |             0 |
|          3 |       0.02 | 4.3796e-04 |  1.118e+03 |         1.000 |             0 |
|          4 |       0.02 | 9.4193e-04 |  1.111e+03 |         1.000 |             0 |
|          5 |       0.02 | 3.7079e-04 |  1.108e+03 |         1.000 |             0 |
|          6 |       0.02 | 9.5777e-05 |  1.107e+03 |         1.000 |             0 |
=====================================================================================

mdl = 
  ldaModel with properties:

                     NumTopics: 4
             WordConcentration: 1
            TopicConcentration: 1
      CorpusTopicProbabilities: [0.2500 0.2500 0.2500 0.2500]
    DocumentTopicProbabilities: [154x4 double]
        TopicWordProbabilities: [3092x4 double]
                    Vocabulary: [1x3092 string]
                    TopicOrder: 'initial-fit-probability'
                       FitInfo: [1x1 struct]

Visualize the topics using word clouds.

figure
for topicIdx = 1:4
    subplot(2,2,topicIdx)
    wordcloud(mdl,topicIdx);
    title("Topic: " + topicIdx)
end
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Fit LDA Model to Word Count Matrix

Fit an LDA model to a collection of documents represented by a word count matrix.

To reproduce the results of this example, set rng to 'default'.

rng('default')

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a corresponding
vocabulary of preprocessed versions of Shakespeare's sonnets. The value counts(i,j) corresponds
to the number of times the jth word of the vocabulary appears in the ith document.

load sonnetsCounts.mat
size(counts)

ans = 1×2

         154        3092

Fit an LDA model with 7 topics. To suppress the verbose output, set 'Verbose' to 0.

numTopics = 7;
mdl = fitlda(counts,numTopics,'Verbose',0);
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Visualize multiple topic mixtures using stacked bar charts. Visualize the topic mixtures of the first
three input documents.

topicMixtures = transform(mdl,counts(1:3,:));
figure
barh(topicMixtures,'stacked')
xlim([0 1])
title("Topic Mixtures")
xlabel("Topic Probability")
ylabel("Document")
legend("Topic "+ string(1:numTopics),'Location','northeastoutside')

Predict Top LDA Topics of Documents

To reproduce the results in this example, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);
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Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.10485 seconds.
=====================================================================================
| Iteration  |  Time per  |  Relative  |  Training  |     Topic     |     Topic     |
|            | iteration  | change in  | perplexity | concentration | concentration |
|            | (seconds)  |   log(L)   |            |               |   iterations  |
=====================================================================================
|          0 |       0.28 |            |  1.159e+03 |         5.000 |             0 |
|          1 |       0.37 | 5.4884e-02 |  8.028e+02 |         5.000 |             0 |
|          2 |       0.51 | 4.7400e-03 |  7.778e+02 |         5.000 |             0 |
|          3 |       0.30 | 3.4597e-03 |  7.602e+02 |         5.000 |             0 |
|          4 |       0.29 | 3.4662e-03 |  7.430e+02 |         5.000 |             0 |
|          5 |       0.39 | 2.9259e-03 |  7.288e+02 |         5.000 |             0 |
|          6 |       0.23 | 6.4180e-05 |  7.291e+02 |         5.000 |             0 |
=====================================================================================

mdl = 
  ldaModel with properties:

                     NumTopics: 20
             WordConcentration: 1
            TopicConcentration: 5
      CorpusTopicProbabilities: [1x20 double]
    DocumentTopicProbabilities: [154x20 double]
        TopicWordProbabilities: [3092x20 double]
                    Vocabulary: [1x3092 string]
                    TopicOrder: 'initial-fit-probability'
                       FitInfo: [1x1 struct]

Predict the top topics for an array of new documents.

newDocuments = tokenizedDocument([
    "what's in a name? a rose by any other name would smell as sweet."
    "if music be the food of love, play on."]);
topicIdx = predict(mdl,newDocuments)

topicIdx = 2×1

    19
     8
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Visualize the predicted topics using word clouds.

figure
subplot(1,2,1)
wordcloud(mdl,topicIdx(1));
title("Topic " + topicIdx(1))
subplot(1,2,2)
wordcloud(mdl,topicIdx(2));
title("Topic " + topicIdx(2))

Input Arguments
bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a bagOfNgrams
object. If bag is a bagOfNgrams object, then the function treats each n-gram as a single word.

numTopics — Number of topics
positive integer

Number of topics, specified as a positive integer. For an example showing how to choose the number
of topics, see “Choose Number of Topics for LDA Model”.
Example: 200
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counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts(i,j) corresponds to the number of times the
jth word of the vocabulary appears in the ith document. Otherwise, the value counts(i,j)
corresponds to the number of times the ith word of the vocabulary appears in the jth document.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Solver','avb' specifies to use approximate variational Bayes as the solver.

Solver Options

Solver — Solver for optimization
'cgs' (default) | 'savb' | 'avb' | 'cvb0'

Solver for optimization, specified as the comma-separated pair consisting of 'Solver' and one of the
following:

Stochastic Solver

• 'savb' – Use stochastic approximate variational Bayes [1] [2]. This solver is best suited for large
datasets and can fit a good model in fewer passes of the data.

Batch Solvers

• 'cgs' – Use collapsed Gibbs sampling [3]. This solver can be more accurate at the cost of taking
longer to run. The resume function does not support models fitted with CGS.

• 'avb' – Use approximate variational Bayes [4]. This solver typically runs more quickly than
collapsed Gibbs sampling and collapsed variational Bayes, but can be less accurate.

• 'cvb0' – Use collapsed variational Bayes, zeroth order [4] [5]. This solver can be more accurate
than approximate variational Bayes at the cost of taking longer to run.

For an example showing how to compare solvers, see “Compare LDA Solvers”.
Example: 'Solver','savb'

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
'LogLikelihoodTolerance' and a positive scalar. The optimization terminates when this
tolerance is reached.
Example: 'LogLikelihoodTolerance',0.001

FitTopicProbabilities — Option for fitting corpus topic probabilities
true (default) | false

Option for fitting topic concentration, specified as the comma-separated pair consisting of
'FitTopicConcentration' and either true or false.
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The function fits the Dirichlet prior α = α0 p1 p2 ⋯ pK  on the topic mixtures, where α0 is the topic
concentration and p1, …, pK are the corpus topic probabilities which sum to 1.

Example: 'FitTopicProbabilities',false
Data Types: logical

FitTopicConcentration — Option for fitting topic concentration
true | false

Option for fitting topic concentration, specified as the comma-separated pair consisting of
'FitTopicConcentration' and either true or false.

For batch the solvers 'cgs', 'avb', and 'cvb0', the default for FitTopicConcentration is true.
For the stochastic solver 'savb', the default is false.

The function fits the Dirichlet prior α = α0 p1 p2 ⋯ pK  on the topic mixtures, where α0 is the topic
concentration and p1, …, pK are the corpus topic probabilities which sum to 1.

Example: 'FitTopicConcentration',false
Data Types: logical

InitialTopicConcentration — Initial estimate of the topic concentration
numTopics/4 (default) | nonnegative scalar

Initial estimate of the topic concentration, specified as the comma-separated pair consisting of
'InitialTopicConcentration' and a nonnegative scalar. The function sets the concentration per
topic to TopicConcentration/NumTopics. For more information, see “Latent Dirichlet Allocation”
on page 1-158.
Example: 'InitialTopicConcentration',25

TopicOrder — Topic Order
'initial-fit-probability' (default) | 'unordered'

Topic order, specified as one of the following:

• 'initial-fit-probability' – Sort the topics by the corpus topic probabilities of input
document set (the CorpusTopicProbabilities property).

• 'unordered' – Do not sort the topics.

WordConcentration — Word concentration
1 (default) | nonnegative scalar

Word concentration, specified as the comma-separated pair consisting of 'WordConcentration'
and a nonnegative scalar. The software sets the Dirichlet prior on the topics (the word probabilities
per topic) to be the symmetric Dirichlet distribution parameter with the value WordConcentration/
numWords, where numWords is the vocabulary size of the input documents. For more information, see
“Latent Dirichlet Allocation” on page 1-158.

DocumentsIn — Orientation of documents
'rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated pair consisting
of 'DocumentsIn' and one of the following:
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• 'rows' – Input is a matrix of word counts with rows corresponding to documents.
• 'columns' – Input is a transposed matrix of word counts with columns corresponding to

documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and specify
'DocumentsIn','columns', then you might experience a significant reduction in optimization-
execution time.

Batch Solver Options

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.

This option supports batch solvers only ('cgs', 'avb', or 'cvb0').
Example: 'IterationLimit',200

Stochastic Solver Options

DataPassLimit — Maximum number of passes through data
1 (default) | positive integer

Maximum number of passes through the data, specified as the comma-separated pair consisting of
'DataPassLimit' and a positive integer.

If you specify 'DataPassLimit' but not 'MiniBatchLimit', then the default value of
'MiniBatchLimit' is ignored. If you specify both 'DataPassLimit' and 'MiniBatchLimit',
then fitlda uses the argument that results in processing the fewest observations.

This option supports only the stochastic ('savb') solver.
Example: 'DataPassLimit',2

MiniBatchLimit — Maximum number of mini-batch passes
positive integer

Maximum number of mini-batch passes, specified as the comma-separated pair consisting of
'MiniBatchLimit' and a positive integer.

If you specify 'MiniBatchLimit' but not 'DataPassLimit', then fitlda ignores the default
value of 'DataPassLimit'. If you specify both 'MiniBatchLimit' and 'DataPassLimit', then
fitlda uses the argument that results in processing the fewest observations. The default value is
ceil(numDocuments/MiniBatchSize), where numDocuments is the number of input documents.

This option supports only the stochastic ('savb') solver.
Example: 'MiniBatchLimit',200

MiniBatchSize — Mini-batch size
1000 (default) | positive integer
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Mini-batch size, specified as the comma-separated pair consisting of 'MiniBatchLimit' and a
positive integer. The function processes MiniBatchSize documents in each iteration.

This option supports only the stochastic ('savb') solver.
Example: 'MiniBatchSize',512

LearnRateDecay — Learning rate decay
0.5 (default) | positive scalar less than or equal to 1

Learning rate decay, specified as the comma-separated pair 'LearnRateDecay' and a positive
scalar less than or equal to 1.

For mini-batch t, the function sets the learning rate to η(t) = 1/(1 + t)κ, where κ is the learning rate
decay.

If LearnRateDecay is close to 1, then the learning rate decays faster and the model learns mostly
from the earlier mini-batches. If LearnRateDecay is close to 0, then the learning rate decays slower
and the model continues to learn from more mini-batches. For more information, see “Stochastic
Solver” on page 1-159.

This option supports the stochastic solver only ('savb').
Example: 'LearnRateDecay',0.75

Display Options

ValidationData — Validation data
[] (default) | bagOfWords object | bagOfNgrams object | sparse matrix of word counts

Validation data to monitor optimization convergence, specified as the comma-separated pair
consisting of 'ValidationData' and a bagOfWords object, a bagOfNgrams object, or a sparse
matrix of word counts. If the validation data is a matrix, then the data must have the same orientation
and the same number of words as the input documents.

ValidationFrequency — Frequency of model validation
positive integer

Frequency of model validation in number of iterations, specified as the comma-separated pair
consisting of 'ValidationFrequency' and a positive integer.

The default value depends on the solver used to fit the model. For the stochastic solver, the default
value is 10. For the other solvers, the default value is 1.

Verbose — Verbosity level
1 (default) | 0

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and one of the
following:

• 0 – Do not display verbose output.
• 1 – Display progress information.

Example: 'Verbose',0
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Output Arguments
mdl — Output LDA model
ldaModel object

Output LDA model, returned as an ldaModel object.

More About
Latent Dirichlet Allocation

A latent Dirichlet allocation (LDA) model is a document topic model which discovers underlying topics
in a collection of documents and infers word probabilities in topics. LDA models a collection of D
documents as topic mixtures θ1, …, θD, over K topics characterized by vectors of word probabilities
φ1, …, φK. The model assumes that the topic mixtures θ1, …, θD, and the topics φ1, …, φK follow a
Dirichlet distribution with concentration parameters α and β respectively.

The topic mixtures θ1, …, θD are probability vectors of length K, where K is the number of topics. The
entry θdi is the probability of topic i appearing in the dth document. The topic mixtures correspond to
the rows of the DocumentTopicProbabilities property of the ldaModel object.

The topics φ1, …, φK are probability vectors of length V, where V is the number of words in the
vocabulary. The entry φiv corresponds to the probability of the vth word of the vocabulary appearing
in the ith topic. The topics φ1, …, φK correspond to the columns of the TopicWordProbabilities
property of the ldaModel object.

Given the topics φ1, …, φK and Dirichlet prior α on the topic mixtures, LDA assumes the following
generative process for a document:

1 Sample a topic mixture θ Dirichlet(α). The random variable θ is a probability vector of length K,
where K is the number of topics.

2 For each word in the document:

a Sample a topic index z Categorical(θ). The random variable z is an integer from 1 through
K, where K is the number of topics.

b Sample a word w Categorical(φz). The random variable w is an integer from 1 through V,
where V is the number of words in the vocabulary, and represents the corresponding word in
the vocabulary.

Under this generative process, the joint distribution of a document with words w1, …, wN, with topic
mixture θ, and with topic indices z1, …, zN is given by

p(θ, z, w α, φ) = p(θ α) ∏
n = 1

N
p(zn θ)p(wn zn, φ),

where N is the number of words in the document. Summing the joint distribution over z and then
integrating over θ yields the marginal distribution of a document w:

p(w α, φ) = ∫
θ

p(θ α) ∏
n = 1

N
∑
zn

p(zn θ)p(wn zn, φ)dθ .
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The following diagram illustrates the LDA model as a probabilistic graphical model. Shaded nodes are
observed variables, unshaded nodes are latent variables, nodes without outlines are the model
parameters. The arrows highlight dependencies between random variables and the plates indicate
repeated nodes.

Dirichlet Distribution

The Dirichlet distribution is a continuous generalization of the multinomial distribution. Given the
number of categories K ≥ 2, and concentration parameter α, where α is a vector of positive reals of
length K, the probability density function of the Dirichlet distribution is given by

p(θ ∣ α) = 1
B(α)∏

i = 1

K

θi
αi− 1,

where B denotes the multivariate Beta function given by

B(α) =
∏i = 1

K

Γ(αi)

Γ∑i = 1

K

αi

.

A special case of the Dirichlet distribution is the symmetric Dirichlet distribution. The symmetric
Dirichlet distribution is characterized by the concentration parameter α, where all the elements of α
are the same.

Stochastic Solver

The stochastic solver processes documents in mini-batches. It updates the per-topic word
probabilities using a weighted sum of the probabilities calculated from each mini-batch, and the
probabilities from all previous mini-batches.

 fitlda

1-159



For mini-batch t, the solver sets the learning rate to η(t) = 1/(1 + t)κ, where κ is the learning rate
decay.

The function uses the learning rate decay to update Φ, the matrix of word probabilities per topic, by
setting

Φ(t) = (1− η(t))Φ(t − 1) + η(t)Φ(t * ),

where Φ(t * ) is the matrix learned from mini-batch t, and Φ(t − 1) is the matrix learned from mini-
batches 1 through t-1.

Before learning begins (when t = 0), the function initializes the initial word probabilities per topic

 with random values.

Compatibility Considerations
fitlda sorts topics
Behavior changed in R2018b

Starting in R2018b, fitlda, by default, sorts the topics in descending order of the topic probabilities
of the input document set. This behavior makes it easier to find the topics with the highest
probabilities.

In previous versions, fitlda does not change the topic order. To reproduce the behavior, set the
'TopicOrder' option to 'unordered'.
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See Also
bagOfNgrams | bagOfWords | fitlsa | ldaModel | logp | lsaModel | predict | resume |
topkwords | transform | wordcloud
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Topics
“Analyze Text Data Using Topic Models”
“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”
“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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fitlsa
Fit LSA model

Syntax
mdl = fitlsa(bag,numComponents)
mdl = fitlsa(counts,numComponents)
mdl = fitlsa( ___ ,Name,Value)

Description
A latent semantic analysis (LSA) model discovers relationships between documents and the words
that they contain. An LSA model is a dimensionality reduction tool useful for running low-dimensional
statistical models on high-dimensional word counts. If the model was fit using a bag-of-n-grams
model, then the software treats the n-grams as individual words.

mdl = fitlsa(bag,numComponents) fits an LSA model with numComponents components to the
bag-of-words or bag-of-n-grams model bag.

mdl = fitlsa(counts,numComponents) fits an LSA model to the documents represented by the
matrix of word counts counts.

mdl = fitlsa( ___ ,Name,Value) specifies additional options using one or more name-value pair
arguments.

Examples

Fit LSA Model

Fit a Latent Semantic Analysis model to a collection of documents.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents) 

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
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        NumWords: 3092
    NumDocuments: 154

Fit an LSA model with 20 components.

numComponents = 20;
mdl = fitlsa(bag,numComponents)

mdl = 
  lsaModel with properties:

              NumComponents: 20
           ComponentWeights: [1x20 double]
             DocumentScores: [154x20 double]
                 WordScores: [3092x20 double]
                 Vocabulary: [1x3092 string]
    FeatureStrengthExponent: 2

Transform new documents into lower dimensional space using the LSA model.

newDocuments = tokenizedDocument([
    "what's in a name? a rose by any other name would smell as sweet."
    "if music be the food of love, play on."]);
dscores = transform(mdl,newDocuments)

dscores = 2×20

    0.1338    0.1623    0.1680   -0.0541   -0.2464   -0.0134    0.2604   -0.0205   -0.1127    0.0627    0.3311   -0.2327    0.1689   -0.2695    0.0228    0.1241    0.1198    0.2535   -0.0607    0.0305
    0.2547    0.5576   -0.0095    0.5660   -0.0643   -0.1236   -0.0082    0.0522    0.0690   -0.0330    0.0385    0.0803   -0.0373    0.0384   -0.0005    0.1943    0.0207    0.0278    0.0001   -0.0469

Fit LSA Model to Word Count Matrix

Load the example data. sonnetsCounts.mat contains a matrix of word counts corresponding to
preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans = 1×2

         154        3092

Fit LSA model with 20 components. Set the feature strength exponent to 4.

numComponents = 20;
exponent = 4;
mdl = fitlsa(counts,numComponents, ...
    'FeatureStrengthExponent',exponent)

mdl = 
  lsaModel with properties:
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              NumComponents: 20
           ComponentWeights: [1x20 double]
             DocumentScores: [154x20 double]
                 WordScores: [3092x20 double]
                 Vocabulary: [1x3092 string]
    FeatureStrengthExponent: 4

Input Arguments
bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a bagOfNgrams
object. If bag is a bagOfNgrams object, then the function treats each n-gram as a single word.

numComponents — Number of components
positive integer

Number of components, specified as a positive integer. This value must be less than the number of
the input documents, and the vocabulary size of the input documents.
Example: 200

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts(i,j) corresponds to the number of times the
jth word of the vocabulary appears in the ith document. Otherwise, the value counts(i,j)
corresponds to the number of times the ith word of the vocabulary appears in the jth document.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'FeatureStrengthExponent',4 sets the feature strength exponent to 4.

DocumentsIn — Orientation of documents
'rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated pair consisting
of 'DocumentsIn' and one of the following:

• 'rows' – Input is a matrix of word counts with rows corresponding to documents.
• 'columns' – Input is a transposed matrix of word counts with columns corresponding to

documents.

This option only applies if you specify the input documents as a matrix of word counts.
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Note If you orient your word count matrix so that documents correspond to columns and specify
'DocumentsIn','columns', then you might experience a significant reduction in optimization-
execution time.

FeatureStrengthExponent — Initial feature strength exponent
2 (default) | nonnegative scalar

Initial feature strength exponent, specified as a nonnegative scalar. This value scales the feature
component strengths for the documentScores, wordScores, and transform functions.
Example: 'FeatureStrengthExponent',4
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
mdl — Output LSA model
lsaModel object

Output LSA model, returned as an lsaModel object.

See Also
bagOfNgrams | bagOfWords | fitlda | ldaModel | lsaModel | transform

Topics
“Analyze Text Data Using Topic Models”
“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”
“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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getAttribute
Read HTML attribute of root node of HTML tree

Syntax
str = getAttribute(tree,attr)

Description
str = getAttribute(tree,attr) returns the attribute attr of the root node of tree. If that
attribute is not set, then the function returns a missing value.

Examples

Get Attribute of HTML Tag

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using
webread.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are the nodes with
element name "A".

selector = "A";
subtrees = findElement(tree,selector);
subtrees(1:10)

ans = 
  10×1 htmlTree:

    <A class="svg_link navbar-brand" href="https://www.mathworks.com?s_tid=gn_logo"><IMG alt="MathWorks" class="mw_logo" src="/images/responsive/global/pic-header-mathworks-logo.svg"/></A>
    <A class="mwa-nav_login" href="https://www.mathworks.com/login?uri=http://www.mathworks.com/help/textanalytics/index.html">Sign In</A>
    <A href="https://www.mathworks.com/products.html?s_tid=gn_ps">Products</A>
    <A href="https://www.mathworks.com/solutions.html?s_tid=gn_sol">Solutions</A>
    <A href="https://www.mathworks.com/academia.html?s_tid=gn_acad">Academia</A>
    <A href="https://www.mathworks.com/support.html?s_tid=gn_supp">Support</A>
    <A href="https://www.mathworks.com/matlabcentral/?s_tid=gn_mlc">Community</A>
    <A href="https://www.mathworks.com/company/events.html?s_tid=gn_ev">Events</A>
    <A href="https://www.mathworks.com/company/aboutus/contact_us.html?s_tid=gn_cntus">Contact Us</A>
    <A href="https://www.mathworks.com/store?s_cid=store_top_nav&amp;s_tid=gn_store">How to Buy</A>

Get the hyperlink references using getAttribute. Specify the attribute name "href".
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attr = "href";
str = getAttribute(subtrees,attr);
str(1:10)

ans = 10×1 string array
    "https://www.mathworks.com?s_tid=gn_logo"
    "https://www.mathworks.com/login?uri=http://www.mathworks.com/help/textanalytics/index.html"
    "https://www.mathworks.com/products.html?s_tid=gn_ps"
    "https://www.mathworks.com/solutions.html?s_tid=gn_sol"
    "https://www.mathworks.com/academia.html?s_tid=gn_acad"
    "https://www.mathworks.com/support.html?s_tid=gn_supp"
    "https://www.mathworks.com/matlabcentral/?s_tid=gn_mlc"
    "https://www.mathworks.com/company/events.html?s_tid=gn_ev"
    "https://www.mathworks.com/company/aboutus/contact_us.html?s_tid=gn_cntus"
    "https://www.mathworks.com/store?s_cid=store_top_nav&s_tid=gn_store"

Input Arguments
tree — HTML tree
htmlTree array

HTML tree, specified as an htmlTree array.

attr — Attribute name
string scalar | character vector | scalar cell array containing a character vector

Attribute name, specified as a string scalar, character vector, or a scalar cell array containing a
character vector.

Output Arguments
str — HTML attribute
string array

HTML attribute, returned as a string array

More About
HTML Elements

A typical HTML element contains the following components:

• Element name – Name of the HTML tag. The element name corresponds to the Name property of
the HTML tree.

• Attributes – Additional information about the tag. HTML attributes have the form name="value",
where name and value denote the attribute name and value respectively. The attributes appear
inside the opening HTML tag. To get the attribute values from an HTML tree, use getAttribute.

• Content – Element content. The content appears between opening and closing HTML tags. The
content can be text data or nested HTML elements. To extract the text from an htmlTree object,
use extractHTMLText. To get the nested HTML elements of an htmlTree object, use the
Children property.
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For example, the HTML element <a href="https://www.mathworks.com">Home</a> comprises
the following components:

Component Value Description
Element name a Element is a hyperlink
Attribute Attribute name href Hyperlink reference

Attribute value "https://
www.mathworks.com"

Hyperlink reference
value

Content Home Text to display

See Also
extractFileText | extractHTMLText | findElement | htmlTree | ismissing |
readPDFFormData | tokenizedDocument

Topics
“Parse HTML and Extract Text Content”
“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2018b
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htmlTree
Parsed HTML tree

Description
An htmlTree object represents a parsed HTML element or node. Extract parts of interest using the
findElement function or the Children property, and extract text using the extractHTMLText
function.

Creation

Syntax
tree = htmlTree(code)

Description

tree = htmlTree(code) parses the HTML code in the string code and returns the resulting tree
structure.

Input Arguments

code — HTML code
string array | character vector | cell array of character vectors

HTML code, specified as a string array, a character vector, or a cell array of character vectors.

Tip

• To read HTML code from a web page, use webread.
• To extract text from an HTML file, use extractFileText.

Example: "<a href='https://www.mathworks.com'>MathWorks</a>"
Data Types: char | string | cell

Properties
Children — Direct descendants of element
htmlTree array

Direct descendants of the element, specified as an htmlTree array.

Parent — Parent node
htmlTree object
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Parent node in the tree, specified as an htmlTree object.

If the HTML tree is a root node, then the value of Parent is missing.

Name — HTML element name
string scalar

HTML element name, specified as a string scalar.

For more information, see “HTML Elements” on page 1-173.

Object Functions
findElement Find elements in HTML tree
getAttribute Read HTML attribute of root node of HTML tree
extractHTMLText Extract text from HTML
ismissing Find HTML trees without values

Examples

Parse HTML Code

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using
webread.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

View the element name of the root node of the tree.

tree.Name

ans = 
"HTML"

View the children of the root node.

tree.Children

ans = 
  4×1 htmlTree:

    " "
    <HEAD><TITLE>Text Analytics Toolbox Documentation</TITLE><META charset="utf-8"/><META content="width=device-width, initial-scale=1.0" name="viewport"/><META content="IE=edge" http-equiv="X-UA-Compatible"/><LINK href="/includes_content/responsive/css/bootstrap/bootstrap.min.css" rel="stylesheet" type="text/css"/><LINK href="/includes_content/responsive/css/site6.css?201903" rel="stylesheet" type="text/css"/><LINK href="/includes_content/responsive/css/site6_lg.css?201903" media="screen and (min-width: 1200px)" rel="stylesheet"/><LINK href="/includes_content/responsive/css/site6_md.css?201903" media="screen and (min-width: 992px) and (max-width: 1199px)" rel="stylesheet"/><LINK href="/includes_content/responsive/css/site6_sm+xs.css?201903" media="screen and (max-width: 991px)" rel="stylesheet"/><LINK href="/includes_content/responsive/css/site6_sm.css?201903" media="screen and (min-width: 768px) and (max-width: 991px)" rel="stylesheet"/><LINK href="/includes_content/responsive/css/site6_…
    " "
    <BODY id="responsive_offcanvas"><!-- Mobile TopNav: Start --><DIV class="header visible-xs visible-sm" id="header_mobile" translate="no"><NAV class="navbar navbar-default" role="navigation"><DIV class="container-fluid"><DIV class="row"><DIV class="col-xs-12"><DIV class="navbar-header"><BUTTON class="navbar-toggle topnav_toggle" data-target="#topnav_collapse" data-toggle="collapse" type="button"><SPAN class="sr-only">Toggle Main Navigation</SPAN><SPAN class="icon-menu"/></BUTTON><A class="svg_link navbar-brand" href="https://www.mathworks.com?s_tid=gn_logo"><IMG alt="MathWorks" class="mw_logo" src="/images/responsive/global/pic-header-mathworks-logo.svg"/></A></DIV></DIV></DIV><DIV class="row visible-xs visible-sm"><DIV class="col-xs-12"><DIV class="navbar-collapse collapse" id="topnav_collapse"><UL class="nav navbar-nav" id="topnav"><LI class="headernav_login"><A class="mwa-nav_login" href="https://www.mathworks.com/login?uri=http://www.mathworks.com/help/textanalytics/index.html">Sign…

Extract the text from the HTML tree using extractHTMLText.

str = extractHTMLText(tree)
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str = 
    "Text Analytics Toolbox™ provides algorithms and visualizations for preprocessing, analyzing, and modeling text data. Models created with the toolbox can be used in applications such as sentiment analysis, predictive maintenance, and topic modeling.
     
     Text Analytics Toolbox includes tools for processing raw text from sources such as equipment logs, news feeds, surveys, operator reports, and social media. You can extract text from popular file formats, preprocess raw text, extract individual words, convert text into numerical representations, and build statistical models.
     
     Using machine learning techniques such as LSA, LDA, and word embeddings, you can find clusters and create features from high-dimensional text datasets. Features created with Text Analytics Toolbox can be combined with features from other data sources to build machine learning models that take advantage of textual, numeric, and other types of data."

Find Elements in HTML Tree

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using the
webread function.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are nodes with element
name "A".

selector = "A";
subtrees = findElement(tree,selector);

View the first few subtrees.

subtrees(1:10)

ans = 
  10×1 htmlTree:

    <A class="svg_link navbar-brand" href="https://www.mathworks.com?s_tid=gn_logo"><IMG alt="MathWorks" class="mw_logo" src="/images/responsive/global/pic-header-mathworks-logo.svg"/></A>
    <A href="https://www.mathworks.com/products.html?s_tid=gn_ps">Products</A>
    <A href="https://www.mathworks.com/solutions.html?s_tid=gn_sol">Solutions</A>
    <A href="https://www.mathworks.com/academia.html?s_tid=gn_acad">Academia</A>
    <A href="https://www.mathworks.com/support.html?s_tid=gn_supp">Support</A>
    <A href="https://www.mathworks.com/matlabcentral/?s_tid=gn_mlc">Community</A>
    <A href="https://www.mathworks.com/company/events.html?s_tid=gn_ev">Events</A>
    <A href="https://www.mathworks.com/company/aboutus/contact_us.html?s_tid=gn_cntus">Contact Us</A>
    <A href="https://www.mathworks.com/products/get-matlab.html?s_tid=gn_getml">Get MATLAB</A>
    <A class="svg_link pull-left" href="https://www.mathworks.com?s_tid=gn_logo"><IMG alt="MathWorks" class="mw_logo" src="/images/responsive/global/pic-header-mathworks-logo.svg"/></A>

Extract the text from the subtrees using extractHTMLText. The result contains the link text from
each link on the page.

str = extractHTMLText(subtrees);
str(1:10)

ans = 10×1 string
    ""
    "Products"
    "Solutions"
    "Academia"
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    "Support"
    "Community"
    "Events"
    "Contact Us"
    "Get MATLAB"
    ""

Get Attribute of HTML Tag

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using
webread.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are the nodes with
element name "A".

selector = "A";
subtrees = findElement(tree,selector);
subtrees(1:10)

ans = 
  10×1 htmlTree:

    <A class="svg_link navbar-brand" href="https://www.mathworks.com?s_tid=gn_logo"><IMG alt="MathWorks" class="mw_logo" src="/images/responsive/global/pic-header-mathworks-logo.svg"/></A>
    <A class="mwa-nav_login" href="https://www.mathworks.com/login?uri=http://www.mathworks.com/help/textanalytics/index.html">Sign In</A>
    <A href="https://www.mathworks.com/products.html?s_tid=gn_ps">Products</A>
    <A href="https://www.mathworks.com/solutions.html?s_tid=gn_sol">Solutions</A>
    <A href="https://www.mathworks.com/academia.html?s_tid=gn_acad">Academia</A>
    <A href="https://www.mathworks.com/support.html?s_tid=gn_supp">Support</A>
    <A href="https://www.mathworks.com/matlabcentral/?s_tid=gn_mlc">Community</A>
    <A href="https://www.mathworks.com/company/events.html?s_tid=gn_ev">Events</A>
    <A href="https://www.mathworks.com/company/aboutus/contact_us.html?s_tid=gn_cntus">Contact Us</A>
    <A href="https://www.mathworks.com/store?s_cid=store_top_nav&amp;s_tid=gn_store">How to Buy</A>

Get the hyperlink references using getAttribute. Specify the attribute name "href".

attr = "href";
str = getAttribute(subtrees,attr);
str(1:10)

ans = 10×1 string array
    "https://www.mathworks.com?s_tid=gn_logo"
    "https://www.mathworks.com/login?uri=http://www.mathworks.com/help/textanalytics/index.html"
    "https://www.mathworks.com/products.html?s_tid=gn_ps"
    "https://www.mathworks.com/solutions.html?s_tid=gn_sol"
    "https://www.mathworks.com/academia.html?s_tid=gn_acad"
    "https://www.mathworks.com/support.html?s_tid=gn_supp"
    "https://www.mathworks.com/matlabcentral/?s_tid=gn_mlc"
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    "https://www.mathworks.com/company/events.html?s_tid=gn_ev"
    "https://www.mathworks.com/company/aboutus/contact_us.html?s_tid=gn_cntus"
    "https://www.mathworks.com/store?s_cid=store_top_nav&s_tid=gn_store"

More About
HTML Elements

A typical HTML element contains the following components:

• Element name – Name of the HTML tag. The element name corresponds to the Name property of
the HTML tree.

• Attributes – Additional information about the tag. HTML attributes have the form name="value",
where name and value denote the attribute name and value respectively. The attributes appear
inside the opening HTML tag. To get the attribute values from an HTML tree, use getAttribute.

• Content – Element content. The content appears between opening and closing HTML tags. The
content can be text data or nested HTML elements. To extract the text from an htmlTree object,
use extractHTMLText. To get the nested HTML elements of an htmlTree object, use the
Children property.

For example, the HTML element <a href="https://www.mathworks.com">Home</a> comprises
the following components:

Component Value Description
Element name a Element is a hyperlink
Attribute Attribute name href Hyperlink reference

Attribute value "https://
www.mathworks.com"

Hyperlink reference
value

Content Home Text to display

See Also
extractHTMLText | findElement | getAttribute | ismissing | readPDFFormData |
tokenizedDocument

Topics
“Parse HTML and Extract Text Content”
“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2018b
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ind2word
Map encoding index to word

Syntax
words = ind2word(enc,M)

Description
words = ind2word(enc,M) returns the words corresponding to the encoding indices in M
according to the word encoding enc.

Examples

Map Encoding Indices to Words

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);
documents(1:10)

ans = 
  10x1 tokenizedDocument:

    70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
    71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
    65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
    71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
    61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet
    68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
    64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
    70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
    70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
    69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Create a word encoding.

enc = wordEncoding(documents)

enc = 
  wordEncoding with properties:

      NumWords: 3092
    Vocabulary: [1x3092 string]
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View the words corresponding to indices 1, 3, and 5 using the ind2word function.

idx = [1 3 5];
words = ind2word(enc,idx)

words = 1x3 string
    "fairest"    "desire"    "thereby"

Input Arguments
enc — Input word encoding
wordEncoding object

Input word encoding, specified as a wordEncoding object.

M — Word encoding indices
vector of positive integers

Word encoding indices, specified as a vector of positive integers.

Output Arguments
words — Output words
string vector

Output words, returned as a string vector.

See Also
doc2sequence | fastTextWordEmbedding | isVocabularyWord | tokenizedDocument |
vec2word | word2ind | wordEmbedding | wordEmbeddingLayer | wordEncoding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2018b
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ismember
(To be removed) Test if word is member of word embedding

Note ismember will be removed in a future release. Use isVocabularyWord instead. For more
information, see “Compatibility Considerations”.

Syntax
tf = ismember(emb,words)

Description
tf = ismember(emb,words) returns an array containing logical 1 (true) where the word in
words is a member of the word embedding emb. Elsewhere, the array contains logical 0 (false).

Examples

Test If Word Is Member of Embedding

Test to determine if words are members of a word embedding.

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding

emb = 

  wordEmbedding with properties:

     Dimension: 300
    Vocabulary: [1×1000000 string]

Test if the words "I", "love", and "fastTextWordEmbedding" are in the word embedding.

words = ["I" "love" "fastTextWordEmbedding"];
tf = ismember(emb,words)

tf =

  1×3 logical array

   1   1   0

Input Arguments
emb — Input word embedding
wordEmbedding object
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Input word embedding, specified as a wordEmbedding object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.
Data Types: string | char | cell

Compatibility Considerations
ismember will be removed
Warns starting in R2018b

To update your code, for wordEmbedding object input, change the function name from ismember to
isVocabularyWord. You do not need to change the arguments. The syntaxes are equivalent.

See Also
fastTextWordEmbedding | isVocabularyWord | tokenizedDocument | vec2word | word2vec |
wordEmbedding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b
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ismissing
Find HTML trees without values

Syntax
tf = ismissing(tree)

Description
tf = ismissing(tree) returns a logical array that indicates which elements of tree do not
reference HTML trees. For example, if tree is given by the Parent property of a root node, then the
function returns 1 (true).

Examples

Test If HTML Tree Is Root Node

To test if an HTML tree object represents a root node, test that the Parent property is missing.

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using
webread.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

Test if the parent of tree references an HTML tree.

tf = ismissing(tree.Parent)

tf = logical
   1

Since tree represents the root node of the HTML tree, the value of tree.Parent is missing and
the ismissing function returns 1 (true).

Input Arguments
tree — HTML tree
htmlTree array

HTML tree, specified as an htmlTree array.
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See Also
extractFileText | extractHTMLText | findElement | getAttribute | htmlTree |
readPDFFormData | tokenizedDocument

Topics
“Parse HTML and Extract Text Content”
“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2018b
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isVocabularyWord
Test if word is member of word embedding or encoding

Syntax
tf = isVocabularyWord(emb,words)
tf = isVocabularyWord(enc,words)

Description
tf = isVocabularyWord(emb,words) tests if the elements of words are members of the word
embedding emb. The function returns a logical array containing 1 (true) where the words are
members of the word embedding. Elsewhere, the array contains 0 (false).

tf = isVocabularyWord(enc,words) tests if the elements of words are members of the word
encoding enc.

Examples

Test If Word Is Member of Embedding

Test to determine if words are members of a word embedding.

Load a pretrained word embedding using the fastTextWordEmbedding function. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding
support package. If this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding

emb = 
  wordEmbedding with properties:

     Dimension: 300
    Vocabulary: [1×999994 string]

Test if the words "I", "love", and "fastTextWordEmbedding" are in the word embedding.

words = ["I" "love" "fastTextWordEmbedding"];
tf = isVocabularyWord(emb,words)

tf = 1×3 logical array

   1   1   0

Input Arguments
emb — Input word embedding
wordEmbedding object
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Input word embedding, specified as a wordEmbedding object.

enc — Input word encoding
wordEncoding object

Input word encoding, specified as a wordEncoding object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.
Data Types: string | char | cell

See Also
doc2sequence | fastTextWordEmbedding | tokenizedDocument | vec2word | word2vec |
wordEmbedding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2018b
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join
Combine multiple bag-of-words or bag-of-n-grams models

Syntax
newBag = join(bag)
newBag = join(bag,dim)

Description
newBag = join(bag) combines the elements in the array bag by merging the frequency counts.
The function combines the elements along the first dimension not equal to 1.

newBag = join(bag,dim) combines the elements in the array bag along the dimension dim.

Examples

Combine Bag-of-Words Models

Create an array of two bags-of-words models from tokenized documents.

str = [ ...
    "an example of a short sentence"
    "a second short sentence"];
documents = tokenizedDocument(str);
bag(1) = bagOfWords(documents(1));
bag(2) = bagOfWords(documents(2))

bag=1×2 object
  1x2 bagOfWords array with properties:

    Counts
    Vocabulary
    NumWords
    NumDocuments

Combine the bag-of-words models using join.

bag = join(bag)

bag = 
  bagOfWords with properties:

          Counts: [2x7 double]
      Vocabulary: [1x7 string]
        NumWords: 7
    NumDocuments: 2
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Create Bag-of-Words Model in Parallel

If your text data is contained in multiple files in a folder, then you can import the text data and create
a bag-of-words model in parallel using parfor. If you have Parallel Computing Toolbox™ installed,
then the parfor loop runs in parallel, otherwise, it runs in serial. Use join to combine an array of
bag-of-words models into one model.

Create a bag-of-words model from a collection of files. The examples sonnets have file names
"exampleSonnetN.txt", where N is the number of the sonnet. Get a list of the files and their
locations using dir.

fileLocation = fullfile(matlabroot,'examples','textanalytics','exampleSonnet*.txt');
fileInfo = dir(fileLocation)

fileInfo = 

  0x1 empty struct array with fields:

    name
    folder
    date
    bytes
    isdir
    datenum

Initialize an empty bag-of-words model and then loop over the files and create an array of bag-of-
words models.

bag = bagOfWords;

numFiles = numel(fileInfo);
parfor i = 1:numFiles
    f = fileInfo(i);
    filename = fullfile(f.folder,f.name);
    
    textData = extractFileText(filename);
    document = tokenizedDocument(textData);
    bag(i) = bagOfWords(document);
end

Combine the bag-of-words models using join.

bag = join(bag)

bag = 
  bagOfWords with properties:

          Counts: []
      Vocabulary: [1x0 string]
        NumWords: 0
    NumDocuments: 0

Input Arguments
bag — Array of bag-of-words or bag-of-n-grams models
bagOfWords array | bagOfNgrams array
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Array of bag-of-words or bag-of-n-grams models, specified as a bagOfWords array or a bagOfNgrams
array. If bag is a bagOfNgrams array, then each element to be joined must have the same value for
the NgramLengths property.

dim — Dimension along which to join models
positive integer

Dimension along which to join models, specified as a positive integer. If dim is not specified, then the
default is the first dimension with a size that does not equal 1.

Output Arguments
newBag — Output model
bagOfWords array | bagOfNgrams array

Output model, returned as a bagOfWords object or a bagOfNgrams object. The type of newBag is
the same as the type of bag. newBag has the same data type as the input model and has a size of 1
along the dimension being joined.

See Also
addDocument | bagOfNgrams | bagOfWords | encode | removeDocument |
removeEmptyDocuments | tfidf | tokenizedDocument | topkngrams | topkwords

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2018a
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joinWords
Convert documents to string by joining words

Syntax
newStr = joinWords(documents)
newStr = joinWords(documents,delim)

Description
newStr = joinWords(documents) converts a tokenizedDocument array to a string array by
joining the words in each document with a space.

newStr = joinWords(documents,delim) joins the words with delimiter delim instead of a
space.

Examples

Convert Documents to String by Joining Words

Convert a tokenizedDocument array to a string array by joining the words with a space.

documents = tokenizedDocument([ 
    "an example of a short sentence"
    "a second short sentence"])

documents = 
  2x1 tokenizedDocument:

    6 tokens: an example of a short sentence
    4 tokens: a second short sentence

str = joinWords(documents)

str = 2x1 string
    "an example of a short sentence"
    "a second short sentence"

Convert a tokenizedDocument array to a string array by joining the words with an underscore.

str = joinWords(documents,"_")

str = 2x1 string
    "an_example_of_a_short_sentence"
    "a_second_short_sentence"
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Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

delim — Delimiter to join words
string scalar | character vector | scalar cell array

Delimiter to join words, specified as a string scalar, character vector, or scalar cell array containing a
character vector.
Example: "_"
Example: '_'
Example: {'_'}
Data Types: char | string | cell

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character vectors. str and
newStr have the same data type.

See Also
context | doc2cell | doclength | string | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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knnsearch
Find nearest neighbors by edit distance

Syntax
idx = knnsearch(eds,words)
[idx,d] = knnsearch(eds,words)
[idx,d] = knnsearch(eds,words,Name,Value)

Description
idx = knnsearch(eds,words) finds the indices of the nearest neighbors in the edit distance
searcher eds to each element in words.

[idx,d] = knnsearch(eds,words) also returns the edit distances between the elements of
words and the nearest neighbors.

[idx,d] = knnsearch(eds,words,Name,Value) specifies additional options using one or more
name-value pair arguments.

Examples

Find Nearest Words

Create an edit distance searcher.

vocabulary = ["MathWorks" "MATLAB" "Simulink"];
eds = editDistanceSearcher(vocabulary,2);

Find the nearest words to "MALTAB" and "MatWorks".

words = ["MALTAB" "MatWorks"];
idx = knnsearch(eds,words)

idx = 2×1

     2
     1

Get the words from the vocabulary using the returned indices.

nearestWords = eds.Vocabulary(idx)

nearestWords = 1x2 string
    "MATLAB"    "MathWorks"
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Find Edit Distances to Nearest Words

Create an edit distance searcher.

vocabulary = ["MATLAB" "Simulink" "MathWorks"];
eds = editDistanceSearcher(vocabulary,2);

Find the nearest words and their edit distances to "MatWorks" and "MALTAB".

words = ["MatWorks" "MALTAB"];
[idx,d] = knnsearch(eds,words)

idx = 2×1

     3
     1

d = 2×1

     1
     2

Get the words from the vocabulary using the returned indices.

nearestWords = eds.Vocabulary(idx)

nearestWords = 1x2 string
    "MathWorks"    "MATLAB"

Changing the word "MatWorks" to "MathWorks" requires one edit: an insertion. Changing the word
"MALTAB" into "MATLAB" requires two edits: a deletion and an insertion.

Find Multiple Neighbors

Create an edit distance searcher.

vocabulary = ["MathWorks" "MATLAB" "Analytics"];
eds = editDistanceSearcher(vocabulary,5);

Find the two nearest words and their edit distances to "Math" and "Analysis".

words = ["Math" "Analysis"];
idx = knnsearch(eds,words,'K',2)

idx = 2×2

     1     2
     3   NaN

View the two closest words to "Math".

idxMath = idx(1,:);
newWords = eds.Vocabulary(idxMath)
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newWords = 1x2 string
    "MathWorks"    "MATLAB"

There is only one word within the maximum edit distance from "Analysis", so the function returns
NaN for the other indices. View the nearest words with valid indices.

idxAnalysis = idx(2,:);
idxAnalysis(isnan(idxAnalysis)) = [];
newWords = eds.Vocabulary(idxAnalysis)

newWords = 
"Analytics"

Input Arguments
eds — Edit distance searcher
editDistanceSearcher

Edit distance searcher, specified as an editDistanceSearcher object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.
Data Types: string | char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: knnsearch(eds,words,'K',3) finds the nearest three neighbors in eds to the elements
of words.

K — Number of nearest neighbors to find
1 (default) | positive integer

Number of nearest neighbors to find for each element in words, specified as a positive integer.
Example: 'K',3
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

IncludeTies — Option to include neighbors whose distance values are equal
false (default) | true

Option to return neighbors whose distance values are equal, specified as true or false.

If 'IncludeTies' is false, then the function returns the K neighbors with the shortest edit
distance, where K is the number of neighbors to find. In this case, the function outputs N-by-K
matrices, where N is the number of input words. To specify K, use the 'K' name-value pair argument.
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If 'IncludeTies' is true, then the function also returns the neighbors whose distances are equal
to the Kth smallest distance in the output. In this case, the function outputs cell arrays of size N-by-1,
where N is the number of input words. The elements of the cell arrays are vectors with at least K
elements. The function sorts the neighbors in each vector in ascending order of distance.
Example: 'IncludeTies',true
Data Types: logical

Output Arguments
idx — Indices of nearest neighbors in searcher
matrix | cell array of vectors

Indices of nearest neighbors in the searcher, returned as a matrix or a cell array of vectors.

If 'IncludeTies' is false, then the function returns the K neighbors with the shortest edit
distance, where K is the number of neighbors to find. In this case, the function outputs N-by-K
matrices, where N is the number of input words. To specify K, use the 'K' name-value pair argument.

If 'IncludeTies' is true, then the function also returns the neighbors whose distances are equal
to the Kth smallest distance in the output. In this case, the function outputs cell arrays of size N-by-1,
where N is the number of input words. The elements of the cell arrays are vectors with at least K
elements. The function sorts the neighbors in each vector in ascending order of distance.
Data Types: double | cell

d — Edit distances to neighbors
matrix | cell array of vectors

Edit distances to neighbors, returned as a matrix or a cell array of vectors.

If 'IncludeTies' is false, then the function returns the K neighbors with the shortest edit
distance, where K is the number of neighbors to find. In this case, the function outputs N-by-K
matrices, where N is the number of input words. To specify K, use the 'K' name-value pair argument.

If 'IncludeTies' is true, then the function also returns the neighbors whose distances are equal
to the Kth smallest distance in the output. In this case, the function outputs cell arrays of size N-by-1,
where N is the number of input words. The elements of the cell arrays are vectors with at least K
elements. The function sorts the neighbors in each vector in ascending order of distance.
Data Types: double | cell

See Also
correctSpelling | editDistance | editDistanceSearcher | rangesearch |
splitGraphemes | tokenizedDocument

Topics
“Correct Spelling in Documents”
“Create Extension Dictionary for Spelling Correction”
“Create Custom Spelling Correction Function Using Edit Distance Searchers”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
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Introduced in R2019a
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ldaModel
Latent Dirichlet allocation (LDA) model

Description
A latent Dirichlet allocation (LDA) model is a topic model which discovers underlying topics in a
collection of documents and infers word probabilities in topics. If the model was fit using a bag-of-n-
grams model, then the software treats the n-grams as individual words.

Creation
Create an LDA model using the fitlda function.

Properties
NumTopics — Number of topics
positive integer

Number of topics in the LDA model, specified as a positive integer.

TopicConcentration — Topic concentration
positive scalar

Topic concentration, specified as a positive scalar. The function sets the concentration per topic to
TopicConcentration/NumTopics. For more information, see “Latent Dirichlet Allocation” on page
1-202.

WordConcentration — Word concentration
1 (default) | nonnegative scalar

Word concentration, specified as a nonnegative scalar. The software sets the concentration per word
to WordConcentration/numWords, where numWords is the vocabulary size of the input documents.
For more information, see “Latent Dirichlet Allocation” on page 1-202.

CorpusTopicProbabilities — Topic probabilities of input document set
vector

Topic probabilities of input document set, specified as a vector. The corpus topic probabilities of an
LDA model are the probabilities of observing each topic in the entire data set used to fit the LDA
model. CorpusTopicProbabilities is a 1-by-K vector where K is the number of topics. The kth
entry of CorpusTopicProbabilities corresponds to the probability of observing topic k.

DocumentTopicProbabilities — Topic probabilities per input document
matrix

Topic probabilities per input document, specified as a matrix. The document topic probabilities of an
LDA model are the probabilities of observing each topic in each document used to fit the LDA model.
DocumentTopicProbabilities is a D-by-K matrix where D is the number of documents used to fit
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the LDA model, and K is the number of topics. The (d,k)th entry of DocumentTopicProbabilities
corresponds to the probability of observing topic k in document d.

If any the topics have zero probability (CorpusTopicProbabilities contains zeros), then the
corresponding columns of DocumentTopicProbabilities and TopicWordProbabilities are
zeros.

The order of the rows in DocumentTopicProbabilities corresponds to the order of the
documents in the training data.

TopicWordProbabilities — Word probabilities per topic
matrix

Word probabilities per topic, specified as a matrix. The topic word probabilities of an LDA model are
the probabilities of observing each word in each topic of the LDA model. TopicWordProbabilities
is a V-by-K matrix, where V is the number of words in Vocabulary and K is the number of topics.
The (v,k)th entry of TopicWordProbabilities corresponds to the probability of observing word v
in topic k.

If any the topics have zero probability (CorpusTopicProbabilities contains zeros), then the
corresponding columns of DocumentTopicProbabilities and TopicWordProbabilities are
zeros.

The order of the rows in TopicWordProbabilities corresponds to the order of the words in
Vocabulary.

TopicOrder — Topic order
'initial-fit-probability' (default) | 'unordered'

Topic order, specified as one of the following:

• 'initial-fit-probability' – Sort the topics by the corpus topic probabilities of the initial
model fit. These probabilities are the CorpusTopicProbabilities property of the initial
ldaModel object returned by fitlda. The resume function does not reorder the topics of the
resulting ldaModel objects.

• 'unordered' – Do not order topics.

FitInfo — Information recorded when fitting LDA model
struct

Information recorded when fitting LDA model, specified as a struct with the following fields:

• TerminationCode – Status of optimization upon exit

• 0 – Iteration limit reached.
• 1 – Tolerance on log-likelihood satisfied.

• TerminationStatus – Explanation of the returned termination code
• NumIterations – Number of iterations performed
• NegativeLogLikelihood – Negative log-likelihood for the data passed to fitlda
• Perplexity – Perplexity for the data passed to fitlda
• Solver – Name of the solver used
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• History – Struct holding the optimization history
• StochasticInfo – Struct holding information for stochastic solvers

Data Types: struct

Vocabulary — List of words in the model
string vector

List of words in the model, specified as a string vector.
Data Types: string

Object Functions
logp Document log-probabilities and goodness of fit of LDA model
predict Predict top LDA topics of documents
resume Resume fitting LDA model
topkwords Most important words in bag-of-words model or LDA topic
transform Transform documents into lower-dimensional space
wordcloud Create word cloud chart from text, bag-of-words model, bag-of-n-grams model, or LDA

model

Examples
Fit LDA Model

To reproduce the results in this example, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154

Fit an LDA model with four topics.

numTopics = 4;
mdl = fitlda(bag,numTopics)
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Initial topic assignments sampled in 0.162168 seconds.
=====================================================================================
| Iteration  |  Time per  |  Relative  |  Training  |     Topic     |     Topic     |
|            | iteration  | change in  | perplexity | concentration | concentration |
|            | (seconds)  |   log(L)   |            |               |   iterations  |
=====================================================================================
|          0 |       0.00 |            |  1.215e+03 |         1.000 |             0 |
|          1 |       0.02 | 1.0482e-02 |  1.128e+03 |         1.000 |             0 |
|          2 |       0.02 | 1.7190e-03 |  1.115e+03 |         1.000 |             0 |
|          3 |       0.02 | 4.3796e-04 |  1.118e+03 |         1.000 |             0 |
|          4 |       0.02 | 9.4193e-04 |  1.111e+03 |         1.000 |             0 |
|          5 |       0.02 | 3.7079e-04 |  1.108e+03 |         1.000 |             0 |
|          6 |       0.02 | 9.5777e-05 |  1.107e+03 |         1.000 |             0 |
=====================================================================================

mdl = 
  ldaModel with properties:

                     NumTopics: 4
             WordConcentration: 1
            TopicConcentration: 1
      CorpusTopicProbabilities: [0.2500 0.2500 0.2500 0.2500]
    DocumentTopicProbabilities: [154x4 double]
        TopicWordProbabilities: [3092x4 double]
                    Vocabulary: [1x3092 string]
                    TopicOrder: 'initial-fit-probability'
                       FitInfo: [1x1 struct]

Visualize the topics using word clouds.

figure
for topicIdx = 1:4
    subplot(2,2,topicIdx)
    wordcloud(mdl,topicIdx);
    title("Topic: " + topicIdx)
end
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Highest Probability Words of LDA Topic

Create a table of the words with highest probability of an LDA topic.

To reproduce the results, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents);

Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.

numTopics = 20;
mdl = fitlda(bag,numTopics,'Verbose',0);
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Find the top 20 words of the first topic.

k = 20;
topicIdx = 1;
tbl = topkwords(mdl,k,topicIdx)

tbl=20×2 table
      Word        Score  
    ________    _________

    "eyes"        0.11155
    "beauty"      0.05777
    "hath"       0.055778
    "still"      0.049801
    "true"       0.043825
    "mine"       0.033865
    "find"       0.031873
    "black"      0.025897
    "look"       0.023905
    "tis"        0.023905
    "kind"       0.021913
    "seen"       0.021913
    "found"      0.017929
    "sin"        0.015937
    "three"      0.013945
    "golden"    0.0099608
      ⋮

Find the top 20 words of the first topic and use inverse mean scaling on the scores.

tbl = topkwords(mdl,k,topicIdx,'Scaling','inversemean')

tbl=20×2 table
      Word       Score  
    ________    ________

    "eyes"        1.2718
    "beauty"     0.59022
    "hath"        0.5692
    "still"      0.50269
    "true"       0.43719
    "mine"       0.32764
    "find"       0.32544
    "black"      0.25931
    "tis"        0.23755
    "look"       0.22519
    "kind"       0.21594
    "seen"       0.21594
    "found"      0.17326
    "sin"        0.15223
    "three"      0.13143
    "golden"    0.090698
      ⋮

Create a word cloud using the scaled scores as the size data.
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figure
wordcloud(tbl.Word,tbl.Score);

Document Topic Probabilities of LDA Model

Get the document topic probabilities (also known as topic mixtures) of the documents used to fit an
LDA model.

To reproduce the results, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents);

Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.
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numTopics = 20;
mdl = fitlda(bag,numTopics,'Verbose',0)

mdl = 
  ldaModel with properties:

                     NumTopics: 20
             WordConcentration: 1
            TopicConcentration: 5
      CorpusTopicProbabilities: [1x20 double]
    DocumentTopicProbabilities: [154x20 double]
        TopicWordProbabilities: [3092x20 double]
                    Vocabulary: [1x3092 string]
                    TopicOrder: 'initial-fit-probability'
                       FitInfo: [1x1 struct]

View the topic probabilities of the first document in the training data.

topicMixtures = mdl.DocumentTopicProbabilities;
figure
bar(topicMixtures(1,:))
title("Document 1 Topic Probabilities")
xlabel("Topic Index")
ylabel("Probability")
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Predict Top LDA Topics of Documents

To reproduce the results in this example, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.10485 seconds.
=====================================================================================
| Iteration  |  Time per  |  Relative  |  Training  |     Topic     |     Topic     |
|            | iteration  | change in  | perplexity | concentration | concentration |
|            | (seconds)  |   log(L)   |            |               |   iterations  |
=====================================================================================
|          0 |       0.28 |            |  1.159e+03 |         5.000 |             0 |
|          1 |       0.37 | 5.4884e-02 |  8.028e+02 |         5.000 |             0 |
|          2 |       0.51 | 4.7400e-03 |  7.778e+02 |         5.000 |             0 |
|          3 |       0.30 | 3.4597e-03 |  7.602e+02 |         5.000 |             0 |
|          4 |       0.29 | 3.4662e-03 |  7.430e+02 |         5.000 |             0 |
|          5 |       0.39 | 2.9259e-03 |  7.288e+02 |         5.000 |             0 |
|          6 |       0.23 | 6.4180e-05 |  7.291e+02 |         5.000 |             0 |
=====================================================================================

mdl = 
  ldaModel with properties:

                     NumTopics: 20
             WordConcentration: 1
            TopicConcentration: 5
      CorpusTopicProbabilities: [1x20 double]
    DocumentTopicProbabilities: [154x20 double]
        TopicWordProbabilities: [3092x20 double]
                    Vocabulary: [1x3092 string]
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                    TopicOrder: 'initial-fit-probability'
                       FitInfo: [1x1 struct]

Predict the top topics for an array of new documents.

newDocuments = tokenizedDocument([
    "what's in a name? a rose by any other name would smell as sweet."
    "if music be the food of love, play on."]);
topicIdx = predict(mdl,newDocuments)

topicIdx = 2×1

    19
     8

Visualize the predicted topics using word clouds.

figure
subplot(1,2,1)
wordcloud(mdl,topicIdx(1));
title("Topic " + topicIdx(1))
subplot(1,2,2)
wordcloud(mdl,topicIdx(2));
title("Topic " + topicIdx(2))
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More About
Latent Dirichlet Allocation

A latent Dirichlet allocation (LDA) model is a document topic model which discovers underlying topics
in a collection of documents and infers word probabilities in topics. LDA models a collection of D
documents as topic mixtures θ1, …, θD, over K topics characterized by vectors of word probabilities
φ1, …, φK. The model assumes that the topic mixtures θ1, …, θD, and the topics φ1, …, φK follow a
Dirichlet distribution with concentration parameters α and β respectively.

The topic mixtures θ1, …, θD are probability vectors of length K, where K is the number of topics. The
entry θdi is the probability of topic i appearing in the dth document. The topic mixtures correspond to
the rows of the DocumentTopicProbabilities property of the ldaModel object.

The topics φ1, …, φK are probability vectors of length V, where V is the number of words in the
vocabulary. The entry φiv corresponds to the probability of the vth word of the vocabulary appearing
in the ith topic. The topics φ1, …, φK correspond to the columns of the TopicWordProbabilities
property of the ldaModel object.

Given the topics φ1, …, φK and Dirichlet prior α on the topic mixtures, LDA assumes the following
generative process for a document:

1 Sample a topic mixture θ Dirichlet(α). The random variable θ is a probability vector of length K,
where K is the number of topics.

2 For each word in the document:

a Sample a topic index z Categorical(θ). The random variable z is an integer from 1 through
K, where K is the number of topics.

b Sample a word w Categorical(φz). The random variable w is an integer from 1 through V,
where V is the number of words in the vocabulary, and represents the corresponding word in
the vocabulary.

Under this generative process, the joint distribution of a document with words w1, …, wN, with topic
mixture θ, and with topic indices z1, …, zN is given by

p(θ, z, w α, φ) = p(θ α) ∏
n = 1

N
p(zn θ)p(wn zn, φ),

where N is the number of words in the document. Summing the joint distribution over z and then
integrating over θ yields the marginal distribution of a document w:

p(w α, φ) = ∫
θ

p(θ α) ∏
n = 1

N
∑
zn

p(zn θ)p(wn zn, φ)dθ .

The following diagram illustrates the LDA model as a probabilistic graphical model. Shaded nodes are
observed variables, unshaded nodes are latent variables, nodes without outlines are the model
parameters. The arrows highlight dependencies between random variables and the plates indicate
repeated nodes.
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Dirichlet Distribution

The Dirichlet distribution is a continuous generalization of the multinomial distribution. Given the
number of categories K ≥ 2, and concentration parameter α, where α is a vector of positive reals of
length K, the probability density function of the Dirichlet distribution is given by

p(θ ∣ α) = 1
B(α)∏

i = 1

K

θi
αi− 1,

where B denotes the multivariate Beta function given by

B(α) =
∏i = 1

K

Γ(αi)

Γ∑i = 1

K

αi

.

A special case of the Dirichlet distribution is the symmetric Dirichlet distribution. The symmetric
Dirichlet distribution is characterized by the concentration parameter α, where all the elements of α
are the same.

See Also
bagOfWords | fitlda | logp | lsaModel | predict | resume | topkwords | transform |
wordcloud

Topics
“Analyze Text Data Using Topic Models”
“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”
“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”
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Introduced in R2017b
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lexrankScores
Document scoring with LexRank algorithm

Syntax
scores = lexrankScores(documents)
scores = lexrankScores(bag)

Description
scores = lexrankScores(documents) scores the specified documents for importance according
to pairwise similarity values using the LexRank algorithm. The function uses cosine similarity, and
computes importance using the PageRank algorithm.

scores = lexrankScores(bag) scores documents encoded by a bag-of-words or bag-of-n-grams
model.

Examples

Importance of Documents

Create an array of tokenized documents.

str = [
    "the quick brown fox jumped over the lazy dog"
    "the fast brown fox jumped over the lazy dog"
    "the lazy dog sat there and did nothing"
    "the other animals sat there watching"];
documents = tokenizedDocument(str)

documents = 
  4x1 tokenizedDocument:

    9 tokens: the quick brown fox jumped over the lazy dog
    9 tokens: the fast brown fox jumped over the lazy dog
    8 tokens: the lazy dog sat there and did nothing
    6 tokens: the other animals sat there watching

Calculate their LexRank scores.

scores = lexrankScores(documents);

Visualize the scores in a bar chart.

figure
bar(scores)
xlabel("Document")
ylabel("Score")
title("LexRank Scores")
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Scores Using Bag-of-Words Model

Create a bag-of-words model from the text data in sonnets.csv.

filename = "sonnets.csv";
tbl = readtable(filename,'TextType','string');
textData = tbl.Sonnet;
documents = tokenizedDocument(textData);
bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [154x3527 double]
      Vocabulary: [1x3527 string]
        NumWords: 3527
    NumDocuments: 154

Calculate LexRank scores for each sonnet.

scores = lexrankScores(bag);

Visualize the scores in a bar chart.
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figure
bar(scores)
xlabel("Document")
ylabel("Score")
title("LexRank Scores")

Input Arguments
documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a bagOfNgrams
object. If bag is a bagOfNgrams object, then the function treats each n-gram as a single word.
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Output Arguments
scores — LexRank scores
vector

LexRank scores, returned as a N-by-1 vector, where scores(i) corresponds to the score for the ith
input document and N is the number of input documents.

References
[1] Erkan, Günes, and Dragomir R. Radev. "Lexrank: Graph-based Lexical Centrality as Salience in

Text Summarization." Journal of Artificial Intelligence Research 22 (2004): 457-479.

See Also
bleuEvaluationScore | bm25Similarity | cosineSimilarity | extractSummary |
mmrScores | rougeEvaluationScore | textrankScores | tokenizedDocument

Topics
“Sequence-to-Sequence Translation Using Attention”

Introduced in R2020a
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lsaModel
Latent semantic analysis (LSA) model

Description
A latent semantic analysis (LSA) model discovers relationships between documents and the words
that they contain. An LSA model is a dimensionality reduction tool useful for running low-dimensional
statistical models on high-dimensional word counts. If the model was fit using a bag-of-n-grams
model, then the software treats the n-grams as individual words.

Creation
Create an LSA model using the fitlsa function.

Properties
NumComponents — Number of components
nonnegative integer

Number of components, specified as a nonnegative integer. The number of components is the
dimensionality of the result vectors. Changing the value of NumComponents changes the length of
the resulting vectors, without influencing the initial values. You can only set NumComponents to be
less than or equal to the number of components used to fit the LSA model.
Example: 100

FeatureStrengthExponent — Exponent scaling feature component strengths
nonnegative scalar

Exponent scaling feature component strengths for the DocumentScores and WordScores
properties, and the transform function, specified as a nonnegative scalar. The LSA model scales the
properties by their singular values (feature strengths), with an exponent of
FeatureStrengthExponent/2.
Example: 2.5

ComponentWeights — Component weights
numeric vector

Component weights, specified as a numeric vector. The component weights of an LSA model are the
singular values, squared. ComponentWeights is a 1-by-NumComponents vector where the jth entry
corresponds to the weight of component j. The components are ordered by decreasing weights. You
can use the weights to estimate the importance of components.

DocumentScores — Score vectors per input document
matrix

Score vectors per input document, specified as a matrix. The document scores of an LSA model are
the score vectors in lower dimensional space of each document used to fit the LSA model.
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DocumentScores is a D-by-NumComponents matrix where D is the number of documents used to fit
the LSA model. The (i,j)th entry of DocumentScores corresponds to the score of component j in
document i.

WordScores — Word scores per component
matrix

Word scores per component, specified as a matrix. The word scores of an LSA model are the scores of
each word in each component of the LSA model. WordScores is a V-by-NumComponents matrix
where V is the number of words in Vocabulary. The (v,j)th entry of WordScores corresponds to the
score of word v in component j.

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.
Data Types: string

Object Functions
transform Transform documents into lower-dimensional space

Examples

Fit LSA Model

Fit a Latent Semantic Analysis model to a collection of documents.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents) 

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154

Fit an LSA model with 20 components.

numComponents = 20;
mdl = fitlsa(bag,numComponents)
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mdl = 
  lsaModel with properties:

              NumComponents: 20
           ComponentWeights: [1x20 double]
             DocumentScores: [154x20 double]
                 WordScores: [3092x20 double]
                 Vocabulary: [1x3092 string]
    FeatureStrengthExponent: 2

Transform new documents into lower dimensional space using the LSA model.

newDocuments = tokenizedDocument([
    "what's in a name? a rose by any other name would smell as sweet."
    "if music be the food of love, play on."]);
dscores = transform(mdl,newDocuments)

dscores = 2×20

    0.1338    0.1623    0.1680   -0.0541   -0.2464   -0.0134    0.2604   -0.0205   -0.1127    0.0627    0.3311   -0.2327    0.1689   -0.2695    0.0228    0.1241    0.1198    0.2535   -0.0607    0.0305
    0.2547    0.5576   -0.0095    0.5660   -0.0643   -0.1236   -0.0082    0.0522    0.0690   -0.0330    0.0385    0.0803   -0.0373    0.0384   -0.0005    0.1943    0.0207    0.0278    0.0001   -0.0469

Calculate Document Similarity

Create a bag-of-words model from some text data.

str = [
    "I enjoy ham, eggs and bacon for breakfast."
    "I sometimes skip breakfast."
    "I eat eggs and ham for dinner."
    ];
documents = tokenizedDocument(str);
bag = bagOfWords(documents);

Fit an LSA model with two components. Set the feature strength exponent to 0.5.

numComponents = 2;
exponent = 0.5;
mdl = fitlsa(bag,numComponents, ...
    'FeatureStrengthExponent',exponent)

mdl = 
  lsaModel with properties:

              NumComponents: 2
           ComponentWeights: [16.2268 4.0000]
             DocumentScores: [3x2 double]
                 WordScores: [14x2 double]
                 Vocabulary: [1x14 string]
    FeatureStrengthExponent: 0.5000

Calculate the cosine distance between the documents score vectors using pdist. View the distances
in a matrix D using squareform. D(i,j) denotes the distance between document i and j.
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dscores = mdl.DocumentScores;
distances = pdist(dscores,'cosine');
D = squareform(distances)

D = 3×3

         0    0.6244    0.1489
    0.6244         0    1.1670
    0.1489    1.1670         0

Visualize the similarity between documents by plotting the document score vectors in a compass plot.

figure
compass(dscores(1,1),dscores(1,2),'red')
hold on
compass(dscores(2,1),dscores(2,2),'green')
compass(dscores(3,1),dscores(3,2),'blue')
hold off
title("Document Scores")
legend(["Document 1" "Document 2" "Document 3"],'Location','bestoutside')

See Also
bagOfWords | fitlsa | ldaModel | lsaModel | transform

Topics
“Analyze Text Data Using Topic Models”
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“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”
“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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logp
Document log-probabilities and goodness of fit of LDA model

Syntax
logProb = logp(ldaMdl,documents)
logProb = logp(ldaMdl,counts)
logProb = logp(ldaMdl,bag)
[logProb,ppl] = logp( ___ )
___  = logp( ___ ,Name,Value)

Description
logProb = logp(ldaMdl,documents) returns the log-probabilities of documents under the LDA
model ldaMdl.

logProb = logp(ldaMdl,counts) returns the log-probabilities of the documents represented by
the matrix of word counts counts.

logProb = logp(ldaMdl,bag) returns the log-probabilities of the documents represented by a
bag-of-words or bag-of-n-grams model.

[logProb,ppl] = logp( ___ ) returns the perplexity computed from the log-probabilities.

___  = logp( ___ ,Name,Value) specifies additional options using one or more name-value pair
arguments.

Examples

Calculate Document Log-Probabilities

To reproduce the results in this example, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:
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          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154

Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.

numTopics = 20;
mdl = fitlda(bag,numTopics,'Verbose',0);

Compute the document log-probabilities of the training documents and show them in a histogram.

logProbabilities = logp(mdl,documents);
figure
histogram(logProbabilities)
xlabel("Log Probability")
ylabel("Frequency")
title("Document Log-Probabilities")

Identify the three documents with the lowest log-probability. A low log-probability may suggest that
the document may be an outlier.

[~,idx] = sort(logProbabilities);
idx(1:3)

ans = 3×1
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   146
    19
    65

documents(idx(1:3))

ans = 
  3x1 tokenizedDocument:

    76 tokens: poor soul centre sinful earth sinful earth rebel powers array why dost thou pine suffer dearth painting thy outward walls costly gay why large cost short lease dost thou upon thy fading mansion spend shall worms inheritors excess eat up thy charge thy bodys end soul live thou upon thy servants loss let pine aggravate thy store buy terms divine selling hours dross fed rich shall thou feed death feeds men death once dead theres dying
    76 tokens: devouring time blunt thou lions paws make earth devour own sweet brood pluck keen teeth fierce tigers jaws burn longlivd phoenix blood make glad sorry seasons thou fleets whateer thou wilt swiftfooted time wide world fading sweets forbid thee heinous crime o carve thy hours loves fair brow nor draw lines thine antique pen thy course untainted allow beautys pattern succeeding men yet thy worst old time despite thy wrong love shall verse ever live young
    73 tokens: brass nor stone nor earth nor boundless sea sad mortality oersways power rage shall beauty hold plea whose action stronger flower o shall summers honey breath hold against wrackful siege battering days rocks impregnable stout nor gates steel strong time decays o fearful meditation alack shall times best jewel times chest lie hid strong hand hold swift foot back spoil beauty forbid o none unless miracle might black ink love still shine bright

Calculate Document Log-Probabilities from Word Count Matrix

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a corresponding
vocabulary of preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans = 1×2

         154        3092

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(counts,numTopics)

Initial topic assignments sampled in 0.101399 seconds.
=====================================================================================
| Iteration  |  Time per  |  Relative  |  Training  |     Topic     |     Topic     |
|            | iteration  | change in  | perplexity | concentration | concentration |
|            | (seconds)  |   log(L)   |            |               |   iterations  |
=====================================================================================
|          0 |       0.31 |            |  1.159e+03 |         5.000 |             0 |
|          1 |       0.34 | 5.4884e-02 |  8.028e+02 |         5.000 |             0 |
|          2 |       0.26 | 4.7400e-03 |  7.778e+02 |         5.000 |             0 |
|          3 |       0.17 | 3.4597e-03 |  7.602e+02 |         5.000 |             0 |
|          4 |       0.34 | 3.4662e-03 |  7.430e+02 |         5.000 |             0 |
|          5 |       0.07 | 2.9259e-03 |  7.288e+02 |         5.000 |             0 |
|          6 |       0.16 | 6.4180e-05 |  7.291e+02 |         5.000 |             0 |
=====================================================================================

mdl = 
  ldaModel with properties:

                     NumTopics: 20
             WordConcentration: 1
            TopicConcentration: 5
      CorpusTopicProbabilities: [1x20 double]
    DocumentTopicProbabilities: [154x20 double]
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        TopicWordProbabilities: [3092x20 double]
                    Vocabulary: [1x3092 string]
                    TopicOrder: 'initial-fit-probability'
                       FitInfo: [1x1 struct]

Compute the document log-probabilities of the training documents. Specify to draw 500 samples for
each document.

numSamples = 500;
logProbabilities = logp(mdl,counts, ...
    'NumSamples',numSamples);

Show the document log-probabilities in a histogram.

figure
histogram(logProbabilities)
xlabel("Log Probability")
ylabel("Frequency")
title("Document Log-Probabilities")

Identify the indices of the three documents with the lowest log-probability.

[~,idx] = sort(logProbabilities);
idx(1:3)

ans = 3×1
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   146
    19
    65

Compare Goodness of Fit

Compare the goodness of fit for two LDA models by calculating the perplexity of a held-out test set of
documents.

To reproduce the results, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Set aside 10% of the documents at random for testing.

numDocuments = numel(documents);
cvp = cvpartition(numDocuments,'HoldOut',0.1);
documentsTrain = documents(cvp.training);
documentsTest = documents(cvp.test);

Create a bag-of-words model from the training documents.

bag = bagOfWords(documentsTrain)

bag = 
  bagOfWords with properties:

          Counts: [139x2909 double]
      Vocabulary: [1x2909 string]
        NumWords: 2909
    NumDocuments: 139

Fit an LDA model with 20 topics to the bag-of-words model. To suppress verbose output, set
'Verbose' to 0.

numTopics = 20;
mdl1 = fitlda(bag,numTopics,'Verbose',0);

View information about the model fit.

mdl1.FitInfo

ans = struct with fields:
          TerminationCode: 1
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        TerminationStatus: "Relative tolerance on log-likelihood satisfied."
            NumIterations: 26
    NegativeLogLikelihood: 5.6915e+04
               Perplexity: 742.7118
                   Solver: "cgs"
                  History: [1x1 struct]

Compute the perplexity of the held-out test set.

[~,ppl1] = logp(mdl1,documentsTest)

ppl1 = 781.6078

Fit an LDA model with 40 topics to the bag-of-words model.

numTopics = 40;
mdl2 = fitlda(bag,numTopics,'Verbose',0);

View information about the model fit.

mdl2.FitInfo

ans = struct with fields:
          TerminationCode: 1
        TerminationStatus: "Relative tolerance on log-likelihood satisfied."
            NumIterations: 37
    NegativeLogLikelihood: 5.4466e+04
               Perplexity: 558.8685
                   Solver: "cgs"
                  History: [1x1 struct]

Compute the perplexity of the held-out test set.

[~,ppl2] = logp(mdl2,documentsTest)

ppl2 = 808.6602

A lower perplexity suggests that the model may be better fit to the held-out test data.

Input Arguments
ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an ldaModel object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.
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bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a bagOfNgrams
object. If bag is a bagOfNgrams object, then the function treats each n-gram as a single word.

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts(i,j) corresponds to the number of times the
jth word of the vocabulary appears in the ith document. Otherwise, the value counts(i,j)
corresponds to the number of times the ith word of the vocabulary appears in the jth document.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumSamples',500 specifies to draw 500 samples for each document

DocumentsIn — Orientation of documents
'rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated pair consisting
of 'DocumentsIn' and one of the following:

• 'rows' – Input is a matrix of word counts with rows corresponding to documents.
• 'columns' – Input is a transposed matrix of word counts with columns corresponding to

documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and specify
'DocumentsIn','columns', then you might experience a significant reduction in optimization-
execution time.

NumSamples — Number of samples to draw
1000 (default) | positive integer

Number of samples to draw for each document, specified as the comma-separated pair consisting of
'NumSamples' and a positive integer.
Example: 'NumSamples',500

Output Arguments
logProb — Log-probabilities
numeric vector

Log-probabilities of the documents under the LDA model, returned as a numeric vector.
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ppl — Perplexity
positive scalar

Perplexity of the documents calculated from the log-probabilities, returned as a positive scalar.

Algorithms
The logp uses the iterated pseudo-count method described in

References
[1] Wallach, Hanna M., Iain Murray, Ruslan Salakhutdinov, and David Mimno. "Evaluation methods for

topic models." In Proceedings of the 26th annual international conference on machine
learning, pp. 1105–1112. ACM, 2009. Harvard

See Also
bagOfWords | fitlda | ldaModel | predict | transform | wordcloud

Topics
“Analyze Text Data Using Topic Models”
“Prepare Text Data for Analysis”
“Extract Text Data from Files”

Introduced in R2017b
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lower
Convert documents to lowercase

Syntax
newDocuments = lower(documents)

Description
newDocuments = lower(documents) converts each uppercase character in the input documents
to the corresponding lowercase character, and leaves all other characters unchanged.

Examples

Convert Documents to Lowercase

Convert all uppercase characters in an array of documents to lowercase.

documents = tokenizedDocument([
    "An Example of a Short Sentence" 
    "A Second Short Sentence"])

documents = 
  2x1 tokenizedDocument:

    6 tokens: An Example of a Short Sentence
    4 tokens: A Second Short Sentence

newDocuments = lower(documents)

newDocuments = 
  2x1 tokenizedDocument:

    6 tokens: an example of a short sentence
    4 tokens: a second short sentence

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments
newDocuments — Output documents
tokenizedDocument array

1 Functions

1-222



Output documents, returned as a tokenizedDocument array.

See Also
decodeHTMLEntities | erasePunctuation | eraseTags | eraseURLs | tokenizedDocument |
upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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mecabOptions
Options for MeCab tokenization

Description
A mecabOptions object specifies additional options for tokenizing Japanese and Korean text.

To tokenize using the specified MeCab tokenization options, use the 'TokenizeMethod' option of
tokenizedDocument.

Creation
Syntax
options = mecabOptions
options = mecabOptions(Name,Value)

Description

options = mecabOptions creates a MeCab tokenization option set with the default values for
tokenizing Japanese.

options = mecabOptions(Name,Value) additionally sets additional “Properties” on page 1-224
using one or more name-value pair arguments.

Properties
Model — Path to trained model
string scalar | character vector

Path to trained model (MeCab dictionary), specified as a string scalar or a character vector.

The default value is a path to the internal dictionary for Japanese tokenization.
Example: "C:\myDict"
Data Types: char | string

UserModel — File containing model extension
"" (default) | string scalar | character vector

File containing model extension (MeCab user dictionary .dic file), specified as a string scalar or a
character vector.
Example: "C:\myFile.dic"
Data Types: char | string

LemmaExtractor — Function extracting lemma from MeCab reply
@textanalytics.ja.mecabToLemma (default) | function handle
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Function extracting lemma from MeCab reply, specified as a function handle.

The function must have the form lemmata = fun(words,info), where words is a string vector of
tokens and info is a struct with the following fields:

• Feature – String vector of tokens of the same size as words containing the MeCab output lines in
ChaSen format without the split tokens themselves.

• PartOfSpeech – Numerical code used inside the dictionary for the part-of-speech classification.

The output lemmata is a string array of the same size as words containing the extracted lemmata.

The default lemma extractor is the textanalytics.ja.mecabToLemma function.
Data Types: function_handle

POSExtractor — Function extracting part-of-speech information from MeCab reply
@textanalytics.ja.mecabToPOS (default) | function handle

Function extracting part-of-speech information from MeCab reply, specified as a function handle.

The function must have the form posTags = fun(words,info), where words is a string vector of
tokens and info is a struct with the following fields:

• Feature – String vector of tokens of the same size as words containing the MeCab output lines in
ChaSen format without the split tokens themselves.

• PartOfSpeech – Numerical code used inside the dictionary for the part-of-speech classification.

The output posTags is a categorical array of the same size as words containing the extracted part-
of-speech tags from the following categories:

• adjective
• adposition
• adverb
• auxiliary-verb
• coord-conjunction
• determiner
• interjection
• noun
• numeral
• pronoun
• proper-noun
• punctuation
• symbol
• verb
• other

The default part-of-speech information extractor is the textanalytics.ja.mecabToPOS function.
Data Types: function_handle
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NERExtractor — Function extracting named entity information from MeCab reply
@textanalytics.ja.mecabToNER (default) | function handle

Function extracting named entity information from MeCab reply, specified as a function handle.

The function must have the form entities = fun(words,info), where words is a string vector of
tokens and info is a struct with the following fields:

• Feature – String vector of tokens of the same size as words containing the MeCab output lines in
ChaSen format without the split tokens themselves.

• PartOfSpeech – Numerical code used inside the dictionary for the part-of-speech classification.

The output entities is a categorical array of the same size as words containing the extracted
entities from the following categories:

• non-entity
• person
• organization
• location
• other

The default part-of-speech information extractor is the textanalytics.ja.mecabToNER function.
Data Types: function_handle

Examples

Create MeCab Options Object

Create a mecabOptions object containing the default options for Japanese tokenization.

options = mecabOptions

options = 

  MecabOptions with properties:

             Model: "C:\Program Files\MATLAB\R2019b\sys\share\dict-ipadic"
         UserModel: ""
    LemmaExtractor: @textanalytics.ja.mecabToLemma
      POSExtractor: @textanalytics.ja.mecabToPOS
      NERExtractor: @textanalytics.ja.mecabToNER

Specify MeCab User Dictionary for Tokenization

Tokenize Japanese text using custom MeCab options.

Create a string array of Japanese text.

str = [
    "恋に悩み、苦しむ。"
    "恋の悩みで苦しむ。"
    "空に星が輝き、瞬いている。"
    "空の星が輝きを増している。"];
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Create a mecabOptions object and specify a user model as a .dic file using the 'UserModel'
option.

options = mecabOptions('UserModel','myFile.dic')

options = 

  MecabOptions with properties:

             Model: "C:\Program Files\MATLAB\R2019b\sys\share\dict-ipadic"
         UserModel: "myFile.dic"
    LemmaExtractor: @textanalytics.ja.mecabToLemma
      POSExtractor: @textanalytics.ja.mecabToPOS
      NERExtractor: @textanalytics.ja.mecabToNER

Tokenize the text using the specified options using the 'TokenizeMethod' option.

documents = tokenizedDocument(str,'TokenizeMethod',options)

documents = 

  4×1 tokenizedDocument:

     6 tokens: 恋 に 悩み 、 苦しむ 。
     6 tokens: 恋 の 悩み で 苦しむ 。
    10 tokens: 空 に 星 が 輝き 、 瞬い て いる 。
    10 tokens: 空 の 星 が 輝き を 増し て いる 。

See Also
addEntityDetails | addLanguageDetails | addLemmaDetails | addPartOfSpeechDetails |
corpusLanguage | normalizeWords | tokenDetails | tokenizedDocument

Topics
“Japanese Language Support”
“Analyze Japanese Text Data”
“Language Considerations”
“Language-Independent Features”

Introduced in R2019b
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mmrScores
Document scoring with Maximal Marginal Relevance (MMR) algorithm

Syntax
scores = mmrScores(documents,queries)
scores = mmrScores(bag,queries)
scores = mmrScores( ___ ,lambda)

Description
scores = mmrScores(documents,queries) scores documents according to their relevance to a
queries avoiding redundancy using the MMR algorithm. The score in scores(i,j) is the MMR
score of documents(i) relative to queries(j).

scores = mmrScores(bag,queries) scores documents encoded by the bag-of-words or bag-of-n-
grams model bag relative to queries. The score in scores(i,j) is the MMR score of ithe
document in bag relative to queries(j).

scores = mmrScores( ___ ,lambda) also specifies the trade off between relevance and
redundancy.

Examples

Relevance to Query

Create an array of input documents.

str = [
    "the quick brown fox jumped over the lazy dog"
    "the fast fox jumped over the lazy dog"
    "the dog sat there and did nothing"
    "the other animals sat there watching"];
documents = tokenizedDocument(str)

documents = 
  4×1 tokenizedDocument:

    9 tokens: the quick brown fox jumped over the lazy dog
    8 tokens: the fast fox jumped over the lazy dog
    7 tokens: the dog sat there and did nothing
    6 tokens: the other animals sat there watching

Create an array of query documents.

str = [
    "a brown fox leaped over the lazy dog"
    "another fox leaped over the dog"];
queries = tokenizedDocument(str)

1 Functions

1-228



queries = 
  2×1 tokenizedDocument:

    8 tokens: a brown fox leaped over the lazy dog
    6 tokens: another fox leaped over the dog

Calculate MMR scores using the mmrScores function. The output is a sparse matrix.

scores = mmrScores(documents,queries);

Visualize the MMR scores in a heat map.

figure
heatmap(scores);
xlabel("Query Document")
ylabel("Input Document")
title("MMR Scores")

Higher scores correspond to stonger relavence to the query documents.

Relevance Versus Redundancy

Create an array of input documents.
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str = [
    "the quick brown fox jumped over the lazy dog"
    "the quick brown fox jumped over the lazy dog"
    "the fast fox jumped over the lazy dog"
    "the dog sat there and did nothing"
    "the other animals sat there watching"
    "the other animals sat there watching"];
documents = tokenizedDocument(str);

Create a bag-of-words model from the input documents.

bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [6x17 double]
      Vocabulary: [1x17 string]
        NumWords: 17
    NumDocuments: 6

Create an array of query documents.

str = [
    "a brown fox leaped over the lazy dog"
    "another fox leaped over the dog"];
queries = tokenizedDocument(str)

queries = 
  2x1 tokenizedDocument:

    8 tokens: a brown fox leaped over the lazy dog
    6 tokens: another fox leaped over the dog

Calculate the MMR scores. The output is a sparse matrix.

scores = mmrScores(bag,queries);

Visualize the MMR scores in a heat map.

figure
heatmap(scores);
xlabel("Query Document")
ylabel("Input Document")
title("MMR Scores")
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Now calculate the scores again, and set the lambda value to 0.01. When the lambda value is close to
0, redundant documents yield lower scores and diverse (but less query-relevant) documents yield
higher scores.

lambda = 0.01;
scores = mmrScores(bag,queries,lambda);

Visualize the MMR scores in a heat map.

figure
heatmap(scores);
xlabel("Query Document")
ylabel("Input Document")
title("MMR Scores, lambda = " + lambda)
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Finally, calculate the scores again and set the lambda value to 1. When the lambda value is 1, the
query-relevant documents yield higher scores despite other documents yielding high scores.

lambda = 1;
scores = mmrScores(bag,queries,lambda);

Visualize the MMR scores in a heat map.

figure
heatmap(scores);
xlabel("Query Document")
ylabel("Input Document")
title("MMR Scores, lambda = " + lambda)
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Input Arguments
documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a bagOfNgrams
object. If bag is a bagOfNgrams object, then the function treats each n-gram as a single word.

queries — Set of query documents
tokenizedDocument array | string array of words | cell array of character vectors

Set of query documents, specified as one of the following:

• A tokenizedDocument array
• A 1-by-N string array representing a single document, where each element is a word
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• A 1-by-N cell array of character vectors representing a single document, where each element is a
word

To compute term frequency and inverse document frequency statistics, the function encodes
queries using a bag-of-words model. The model it uses depends on the syntax you call it with. If
your syntax specifies the input argument documents, then it uses bagOfWords(documents). If
your syntax specifies bag, then the function encodes queries using bag then uses the resulting tf-idf
matrix.

lambda — Trade off between relevance and redundancy
0.3 (default) | nonnegative scalar

Trade off between relevance and redundancy, specified as a nonnegative scalar.

When lambda is close to 0, redundant documents yield lower scores and diverse (but less query-
relevant) documents yield higher scores. If lambda is 1, then query-relevant documents yield higher
scores despite other documents yielding high scores.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
scores — MMR scores
vector

MMR scores, returned as an N1-by-N2 matrix, where scores(i,j) is the MMR score of
documents(i) relative to jth query document, and N1 and N2 are the number of input and query
documents, respectively.

A document has a high MMR score if it is both relevant to the query and has minimal similarity
relative to the other documents.

References
[1] Carbonell, Jaime G., and Jade Goldstein. "The use of MMR, diversity-based reranking for

reordering documents and producing summaries." In SIGIR, vol. 98, pp. 335-336. 1998.

See Also
bleuEvaluationScore | bm25Similarity | cosineSimilarity | extractSummary |
lexrankScores | rougeEvaluationScore | textrankScores | tokenizedDocument

Topics
“Sequence-to-Sequence Translation Using Attention”

Introduced in R2020a
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normalizeWords
Stem or lemmatize words

Syntax
updatedDocuments = normalizeWords(documents)

updatedWords = normalizeWords(words)
updatedWords = normalizeWords(words,'Language',language)

___  = normalizeWords( ___ ,'Style',style)

Description
Use normalizeWords to reduce words to a root form. To lemmatize English words (reduce them to
their dictionary forms), set the 'Style' option to 'lemma'.

The function supports English, Japanese, German, and Korean text.

updatedDocuments = normalizeWords(documents) reduces the words in documents to a root
form. For English and German text, the function, by default, stems the words using the Porter
stemmer for English and German text respectively. For Japanese and Korean text, the function, by
default, lemmatizes the words using the MeCab tokenizer.

updatedWords = normalizeWords(words) reduces each word in the string array words to a root
form.

updatedWords = normalizeWords(words,'Language',language) reduces the words and also
specifies the word language.

___  = normalizeWords( ___ ,'Style',style) also specifies normalization style. For example,
normalizeWords(documents,'Style','lemma') lemmatizes the words in the input documents.

Examples

Stem Words in Documents

Stem the words in a document array using the Porter stemmer.

documents = tokenizedDocument([
    "a strongly worded collection of words"
    "another collection of words"]);
newDocuments = normalizeWords(documents)

newDocuments = 
  2x1 tokenizedDocument:

    6 tokens: a strongli word collect of word
    4 tokens: anoth collect of word
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Stem Words in String Array

Stem the words in a string array using the Porter stemmer. Each element of the string array must be
a single word.

words = ["a" "strongly" "worded" "collection" "of" "words"];
newWords = normalizeWords(words)

newWords = 1x6 string
    "a"    "strongli"    "word"    "collect"    "of"    "word"

Lemmatize Words in Documents

Lemmatize the words in a document array.

documents = tokenizedDocument([
    "I am building a house."
    "The building has two floors."]);
newDocuments = normalizeWords(documents,'Style','lemma')

newDocuments = 
  2x1 tokenizedDocument:

    6 tokens: i be build a house .
    6 tokens: the build have two floor .

To improve the lemmatization, first add part-of-speech details to the documents using the
addPartOfSpeechDetails function. For example, if the documents contain part-of-speech details,
then normalizeWords reduces the only verb "building" and not the noun "building".

documents = addPartOfSpeechDetails(documents);
newDocuments = normalizeWords(documents,'Style','lemma')

newDocuments = 
  2x1 tokenizedDocument:

    6 tokens: i be build a house .
    6 tokens: the building have two floor .

Lemmatize Japanese Text

Tokenize Japanese text using the tokenizedDocument function. The function automatically detects
Japanese text.

str = [
    "空に星が輝き、瞬いている。"
    "空の星が輝きを増している。"
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    "駅までは遠くて、歩けない。"
    "遠くの駅まで歩けない。"];
documents = tokenizedDocument(str);

Lemmatize the tokens using normalizeWords.

documents = normalizeWords(documents)

documents = 
  4x1 tokenizedDocument:

    10 tokens: 空 に 星 が 輝く 、 瞬く て いる 。
    10 tokens: 空 の 星 が 輝き を 増す て いる 。
     9 tokens: 駅 まで は 遠い て 、 歩ける ない 。
     7 tokens: 遠く の 駅 まで 歩ける ない 。

Stem German Text

Tokenize German text using the tokenizedDocument function. The function automatically detects
German text.

str = [
    "Guten Morgen. Wie geht es dir?"
    "Heute wird ein guter Tag."];
documents = tokenizedDocument(str);

Stem the tokens using normalizeWords.

documents = normalizeWords(documents)

documents = 
  2x1 tokenizedDocument:

    8 tokens: gut morg . wie geht es dir ?
    6 tokens: heut wird ein gut tag .

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.
Data Types: string | char | cell

 normalizeWords

1-237



style — Normalization style
'stem' | 'lemma'

Normalization style, specified as one of the following:

• 'stem' – Stem words using the Porter stemmer. This option supports English and German text
only. For English and German text, this value is the default.

• 'lemma' – Extract the dictionary form of each word. This option supports English, Japanese, and
Korean text only. If a word is not in the internal dictionary, then the function outputs the word
unchanged. For English text, the output is lowercase. For Japanese and Korean text, this value is
the default.

The function only normalizes tokens with type 'letters' and 'other'. For more information on
token types, see tokenDetails.

Tip For English text, to improve lemmatization of words in documents, first add part-of-speech
details using the addPartOfSpeechDetails function.

language — Word language
'en' | 'de'

Word language, specified as one of the following:

• 'en' – English language
• 'de' – German language

If you do not specify language, then the software detects the language automatically. To lemmatize
Japanese or Korean text, use tokenizedDocument input.
Data Types: char | string

Output Arguments
updatedDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array.

updatedWords — Updated words
string array | character vector | cell array of character vectors

Updated words, returned as a string array, character vector, or cell array of character vectors. words
and updatedWords have the same data type.

Algorithms
Language Details

tokenizedDocument objects contain details about the tokens including language details. The
language details of the input documents determine the behavior of normalizeWords. The
tokenizedDocument function, by default, automatically detects the language of the input text. To
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specify the language details manually, use the 'Language' name-value pair argument of
tokenizedDocument. To view the token details, use the tokenDetails function.

Compatibility Considerations
normalizeWords skips complex tokens
Behavior changed in R2018b

Starting in R2018b, for tokenizedDocument input, normalizeWords normalizes tokens with type
'letters' or 'other' only. This behavior prevents the function from affecting complex tokens such
as URLs and email-addresses.

In previous versions, normalizeWords normalizes all tokens. To reproduce this behavior, use the
command updatedDocuments = docfun(@(str) normalizeWords(str),documents).

See Also
addLemmaDetails | addPartOfSpeechDetails | bagOfNgrams | bagOfWords |
removeLongWords | removeShortWords | removeStopWords | removeWords | stopWords |
tokenDetails | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Language Considerations”
“Japanese Language Support”
“German Language Support”

Introduced in R2017b

 normalizeWords

1-239



plus, +
Append documents

Syntax
newDocuments = documents1 + documents2
newDocuments = plus(documents1,documents2)

Description
newDocuments = documents1 + documents2 appends the documents in documents2 to the
documents in documents1.

newDocuments = plus(documents1,documents2) is equivalent to newDocuments =
documents1 + documents2.

Examples

Append Documents

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create arrays containing the first 5 and second 5 sonnets.

documents1 = documents(1:5)

documents1 = 
  5x1 tokenizedDocument:

    70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
    71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
    65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
    71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
    61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet

documents2 = documents(6:10)

documents2 = 
  5x1 tokenizedDocument:

    68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
    64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
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    70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
    70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
    69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Append the second 5 sonnets to the first 5 sonnets.

newDocuments = documents1 + documents2

newDocuments = 
  5x1 tokenizedDocument:

    138 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
    135 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
    135 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
    141 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
    130 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Input Arguments
documents1 — Input documents
array of tokenized documents

Input documents, specified as a tokenizedDocument array. documents1 and documents2 must be
the same size.

documents2 — Input documents
array of tokenized documents

Input documents, specified as a tokenizedDocument array. documents1 and documents2 must be
the same size.

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also
addPartOfSpeechDetails | addSentenceDetails | bagOfNgrams | bagOfWords | docfun |
eraseURLs | normalizeWords | replace | tokenDetails | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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predict
Predict top LDA topics of documents

Syntax
topicIdx = predict(ldaMdl,documents)
topicIdx = predict(ldaMdl,bag)
topicIdx = predict(ldaMdl,counts)
[topicIdx,score] = predict( ___ )
___  = predict( ___ ,Name,Value)

Description
topicIdx = predict(ldaMdl,documents) returns the LDA topic indices with the largest
probabilities for documents based on the LDA model ldaMdl.

topicIdx = predict(ldaMdl,bag) returns the LDA topic indices with the largest probabilities
for the documents represented by a bag-of-words or bag-of-n-grams model.

topicIdx = predict(ldaMdl,counts) returns the LDA topic indices with the largest
probabilities for the documents represented by a matrix of word counts.

[topicIdx,score] = predict( ___ ) also returns a matrix of posterior probabilities score.

___  = predict( ___ ,Name,Value) specifies additional options using one or more name-value
pair arguments.

Examples

Predict Top LDA Topics of Documents

To reproduce the results in this example, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:
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          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.10485 seconds.
=====================================================================================
| Iteration  |  Time per  |  Relative  |  Training  |     Topic     |     Topic     |
|            | iteration  | change in  | perplexity | concentration | concentration |
|            | (seconds)  |   log(L)   |            |               |   iterations  |
=====================================================================================
|          0 |       0.28 |            |  1.159e+03 |         5.000 |             0 |
|          1 |       0.37 | 5.4884e-02 |  8.028e+02 |         5.000 |             0 |
|          2 |       0.51 | 4.7400e-03 |  7.778e+02 |         5.000 |             0 |
|          3 |       0.30 | 3.4597e-03 |  7.602e+02 |         5.000 |             0 |
|          4 |       0.29 | 3.4662e-03 |  7.430e+02 |         5.000 |             0 |
|          5 |       0.39 | 2.9259e-03 |  7.288e+02 |         5.000 |             0 |
|          6 |       0.23 | 6.4180e-05 |  7.291e+02 |         5.000 |             0 |
=====================================================================================

mdl = 
  ldaModel with properties:

                     NumTopics: 20
             WordConcentration: 1
            TopicConcentration: 5
      CorpusTopicProbabilities: [1x20 double]
    DocumentTopicProbabilities: [154x20 double]
        TopicWordProbabilities: [3092x20 double]
                    Vocabulary: [1x3092 string]
                    TopicOrder: 'initial-fit-probability'
                       FitInfo: [1x1 struct]

Predict the top topics for an array of new documents.

newDocuments = tokenizedDocument([
    "what's in a name? a rose by any other name would smell as sweet."
    "if music be the food of love, play on."]);
topicIdx = predict(mdl,newDocuments)

topicIdx = 2×1

    19
     8

Visualize the predicted topics using word clouds.

figure
subplot(1,2,1)
wordcloud(mdl,topicIdx(1));
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title("Topic " + topicIdx(1))
subplot(1,2,2)
wordcloud(mdl,topicIdx(2));
title("Topic " + topicIdx(2))

Predict Top LDA Topics of Word Count Matrix

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a corresponding
vocabulary of preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans = 1×2

         154        3092

Fit an LDA model with 20 topics. To reproduce the results in this example, set rng to 'default'.

rng('default')
numTopics = 20;
mdl = fitlda(counts,numTopics)

Initial topic assignments sampled in 0.148867 seconds.
=====================================================================================
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| Iteration  |  Time per  |  Relative  |  Training  |     Topic     |     Topic     |
|            | iteration  | change in  | perplexity | concentration | concentration |
|            | (seconds)  |   log(L)   |            |               |   iterations  |
=====================================================================================
|          0 |       0.12 |            |  1.159e+03 |         5.000 |             0 |
|          1 |       0.10 | 5.4884e-02 |  8.028e+02 |         5.000 |             0 |
|          2 |       0.08 | 4.7400e-03 |  7.778e+02 |         5.000 |             0 |
|          3 |       0.08 | 3.4597e-03 |  7.602e+02 |         5.000 |             0 |
|          4 |       0.11 | 3.4662e-03 |  7.430e+02 |         5.000 |             0 |
|          5 |       0.09 | 2.9259e-03 |  7.288e+02 |         5.000 |             0 |
|          6 |       0.08 | 6.4180e-05 |  7.291e+02 |         5.000 |             0 |
=====================================================================================

mdl = 
  ldaModel with properties:

                     NumTopics: 20
             WordConcentration: 1
            TopicConcentration: 5
      CorpusTopicProbabilities: [1x20 double]
    DocumentTopicProbabilities: [154x20 double]
        TopicWordProbabilities: [3092x20 double]
                    Vocabulary: [1x3092 string]
                    TopicOrder: 'initial-fit-probability'
                       FitInfo: [1x1 struct]

Predict the top topics for the first 5 documents in counts.

topicIdx = predict(mdl,counts(1:5,:))

topicIdx = 5×1

     3
    15
    19
     3
    14

Calculate Topic Prediction Scores

To reproduce the results in this example, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);
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Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154

Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.

numTopics = 20;
mdl = fitlda(bag,numTopics,'Verbose',0);

Predict the top topics for a new document. Specify the iteration limit to be 200.

newDocument = tokenizedDocument("what's in a name? a rose by any other name would smell as sweet.");
iterationLimit = 200;
[topicIdx,scores] = predict(mdl,newDocument, ...
    'IterationLimit',iterationLimit)

topicIdx = 19

scores = 1×20

    0.0250    0.0250    0.0250    0.0250    0.1250    0.0250    0.0250    0.0250    0.0250    0.0730    0.0250    0.0250    0.0770    0.0250    0.0250    0.0250    0.0250    0.0250    0.2250    0.1250

View the prediction scores in a bar chart.

figure
bar(scores)
title("LDA Topic Prediction Scores")
xlabel("Topic Index")
ylabel("Score")
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Input Arguments
ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an ldaModel object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is a tokenizedDocument, then it must be a column vector. If
documents is a string array or a cell array of character vectors, then it must be a row of the words of
a single document.

Tip To ensure that the function does not discard useful information, you must first preprocess the
input documents using the same steps used to preprocess the documents used to train the model.

bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a bagOfNgrams
object. If bag is a bagOfNgrams object, then the function treats each n-gram as a single word.
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counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts(i,j) corresponds to the number of times the
jth word of the vocabulary appears in the ith document. Otherwise, the value counts(i,j)
corresponds to the number of times the ith word of the vocabulary appears in the jth document.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'IterationLimit',200 specifies the iteration limit to be 200.

DocumentsIn — Orientation of documents
'rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated pair consisting
of 'DocumentsIn' and one of the following:

• 'rows' – Input is a matrix of word counts with rows corresponding to documents.
• 'columns' – Input is a transposed matrix of word counts with columns corresponding to

documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and specify
'DocumentsIn','columns', then you might experience a significant reduction in optimization-
execution time.

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.
Example: 'IterationLimit',200

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
'LogLikelihoodTolerance' and a positive scalar. The optimization terminates when this
tolerance is reached.
Example: 'LogLikelihoodTolerance',0.001

Output Arguments
topicIdx — Predicted topic indices
vector of numeric indices
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Predicted topic indices, returned as a vector of numeric indices.

score — Predicted topic probabilities
matrix

Predicted topic probabilities, returned as a D-by-K matrix, where D is the number of input documents
and K is the number of topics in the LDA model. score(i,j) is the probability that topic j appears
in document i. Each row of score sums to one.

See Also
bagOfWords | fitlda | ldaModel | logp | transform | wordcloud

Topics
“Analyze Text Data Using Topic Models”
“Prepare Text Data for Analysis”
“Extract Text Data from Files”

Introduced in R2017b
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rangesearch
Find nearest neighbors by edit distance range

Syntax
idx = rangesearch(eds,words,maxDist)
[idx,d] = rangesearch(eds,words,maxDist)

Description
idx = rangesearch(eds,words,maxDist) finds all the words in eds that are within distance
maxDist of the words in words.

[idx,d] = rangesearch(eds,words,maxDist) also returns the edit distances of the
corresponding words.

Examples

Find Nearest Neighbors in Range

Create an edit distance searcher and specify a maximum edit distance of 3.

vocabulary = ["MathWorks" "MATLAB" "Simulink" "text" "analytics" "analysis"];
maxDist = 3;
eds = editDistanceSearcher(vocabulary,maxDist);

Find the nearest words to "MALTAB" and "MatWorks" with edit distance less than or equal to 1.

words = ["MALTAB" "MatWorks" "analytcs"];
maxDist = 1;
idx = rangesearch(eds,words,maxDist)

idx=3×1 cell array
    {1x0 double}
    {[       1]}
    {[       5]}

For "MALTAB", there are no words in the searcher within the specified range. For "MatWorks" and
"analytics", there is one result. View the corresponding word for "MatWorks" using the returned
index.

nearestWords = eds.Vocabulary(idx{2})

nearestWords = 
"MathWorks"

Find the nearest words to "MALTAB", "MatWorks", and "analytcs" with edit distance less than or
equal to 3 and their corresponding edit distances.
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words = ["MALTAB" "MatWorks" "analytcs"];
maxDist = 3;
[idx,d] = rangesearch(eds,words,maxDist)

idx=3×1 cell array
    {[       2]}
    {[       1]}
    {1x2 double}

d=3×1 cell array
    {[       2]}
    {[       1]}
    {1x2 double}

For both "MALTAB" and "MatWorks", there is one word in the searcher within the specified range.
For "analytcs", there are two results. View the corresponding words for "analytcs" using the
returned indices and their edit distances.

nearestWords = eds.Vocabulary(idx{3})

nearestWords = 1x2 string
    "analytics"    "analysis"

d{3}

ans = 1×2

     1     2

Input Arguments
eds — Edit distance searcher
editDistanceSearcher

Edit distance searcher, specified as an editDistanceSearcher object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.
Data Types: string | char | cell

maxDist — Maximum search distance
non-negative number

Maximum search distance, specified as a non-negative number.

The function finds the indices of the words in eds whose edit distance to the elements of words are
fewer than or equal to maxDist, sorted in the ascending order edit distance.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
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Output Arguments
idx — Indices of nearest neighbors in searcher
cell array of vectors

Indices of nearest neighbors in the searcher, returned as a cell array of vectors.

idx{i} is a vector of indices of the words in eds whose edit distance to words(i) is less than or
equal to maxDist, sorted in the ascending order edit distance.
Data Types: cell

d — Edit distances to neighbors
cell array of vectors

Edit distances to neighbors, returned as a cell array of vectors.

d{i} is a vector of edit distances between words(i) and the corresponding words in eds given by
the vocabulary indices idx{i}.
Data Types: cell

See Also
correctSpelling | editDistance | editDistanceSearcher | knnsearch | splitGraphemes |
tokenizedDocument

Topics
“Correct Spelling in Documents”
“Create Extension Dictionary for Spelling Correction”
“Create Custom Spelling Correction Function Using Edit Distance Searchers”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”

Introduced in R2019a
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ratioSentimentScores
Sentiment scores with ratio rule

Syntax
compoundScores = ratioSentimentScores(documents)
[compoundScores,positiveScores,negativeScores] = ratioSentimentScores(
documents)
___  = ratioSentimentScores( ___ ,Name,Value)

Description
Use ratioSentimentScores to evaluate sentiment in tokenized text with a ratio rule. The
ratioSentimentScores function, by default, uses the VADER sentiment lexicon.

compoundScores = ratioSentimentScores(documents) returns sentiment scores for
tokenized documents based on the ratio of positive and negative tokens. For each document where
the ratio of the positive score to negative score is larger than 1, the function returns 1. For each
document where the ratio of the negative score to positive score is larger than 1, the function returns
-1. Otherwise, the function returns 0.

[compoundScores,positiveScores,negativeScores] = ratioSentimentScores(
documents) also returns the sums of the positive and negative token scores of the documents
respectively.

___  = ratioSentimentScores( ___ ,Name,Value) specifies additional options using one or
more name-value pairs.

Examples

Evaluate Sentiment in Text

Create a tokenized document.

str = [
    "The book was VERY good!!!!"
    "The book was terrible."];
documents = tokenizedDocument(str);

Evaluate the sentiment of the tokenized documents. A score of 1 indicates positive sentiment, a score
of -1 indicates negative sentiment, and a score of 0 indicates neutral sentiment.

compoundScores = ratioSentimentScores(documents)

compoundScores = 2×1

     1
    -1
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Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: Threshold,0.5 sets the ratio threshold to 0.5

SentimentLexicon — Sentiment lexicon
table

Sentiment lexicon, specified as a table with the following columns:

• Token – Token, specified as a string scalar.
• SentimentScore – Sentiment score of token, specified as a numeric scalar.

The default sentiment lexicon is the VADER sentiment lexicon.
Data Types: table

Threshold — Ratio threshold
1 (default) | nonnegative scalar

Ratio threshold, specified as a nonnegative scalar.

If the ratio of the positive score to negative score of documents(i) is larger than Threshold, then
compoundScores(i) is 1. If the ratio of the negative score to positive score of documents(i) is
larger than Threshold, then compoundScores(i) is -1. Otherwise, compoundScores(i) is 0.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
compoundScores — Compound sentiment scores
numeric vector

Compound sentiment scores, returned as a numeric vector. The function returns one score for each
input document.

If the ratio of the positive score to negative score of documents(i) is larger than Threshold, then
compoundScores(i) is 1. If the ratio of the negative score to positive score of documents(i) is
larger than Threshold, then compoundScores(i) is -1. Otherwise, compoundScores(i) is 0.

positiveScores — Positive sentiment scores
numeric vector

Positive sentiment scores, returned as a numeric vector. The function returns one score for each input
document. The value positiveScores(i) corresponds to the positive sentiment score of
documents(i).
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negativeScores — Negative sentiment scores
numeric vector

Negative sentiment scores, returned as a numeric vector. The function returns one score for each
input document. The value negativeScores(i) corresponds to the negative sentiment score of
documents(i).

See Also
tokenizedDocument | vaderSentimentScores

Topics
“Create Simple Preprocessing Function”
“Train a Sentiment Classifier”
“Create Simple Text Model for Classification”
“Analyze Text Data Containing Emojis”
“Analyze Text Data Using Topic Models”

Introduced in R2019b
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readPDFFormData
Read data from PDF forms

Syntax
data = readPDFFormData(filename)
data = readPDFFormData(filename,'Password',password)

Description
data = readPDFFormData(filename) reads the data from a PDF form into a struct.

data = readPDFFormData(filename,'Password',password) specifies the password for
opening the PDF form.

Examples

Read Data from PDF Form

Read the data from the form fields in weatherReportForm1.pdf using readPDFFormData. The
function returns a struct containing the data from the PDF form fields.

filename = "weatherReportForm1.pdf";
data = readPDFFormData(filename)

data = struct with fields:
         event_type: "Thunderstorm Wind"
    event_narrative: "Large tree down between Plantersville and Nettleton."

Read Data From Multiple Forms

Read the data from the form fields in multiple files using a file datastore.

Create a file datastore for the weather reports forms. The forms are named
"weatherReportFormN.pdf", where N is the number of the form.. Specify the file name using the
wildcard "*" to find all file names of this structure. To specify the read function to be
readPDFFormData, input this function to fileDatastore using a function handle.

fds = fileDatastore("weatherReportForm*.pdf",'ReadFcn',@readPDFFormData)

fds = 
  FileDatastore with properties:

                       Files: {
                              ' ...\ib9D0363\1\tpc36a576a\textanalytics-ex39762425\weatherReportForm1.pdf';
                              ' ...\ib9D0363\1\tpc36a576a\textanalytics-ex39762425\weatherReportForm2.pdf';
                              ' ...\ib9D0363\1\tpc36a576a\textanalytics-ex39762425\weatherReportForm3.pdf'
                               ... and 1 more
                              }

1 Functions

1-256



                     Folders: {
                              ' ...\Bdoc20a_1326390_8984\ib9D0363\1\tpc36a576a\textanalytics-ex39762425'
                              }
                 UniformRead: 0
                    ReadMode: 'file'
                   BlockSize: Inf
                  PreviewFcn: @readPDFFormData
      SupportedOutputFormats: [1x16 string]
                     ReadFcn: @readPDFFormData
    AlternateFileSystemRoots: {}

Loop over the files in the datastore and read each PDF form.

data = [];
while hasdata(fds)
    textData = read(fds);
    data = [data; textData];
end
data

data=4×1 struct array with fields:
    event_type
    event_narrative

Input Arguments
filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.

readPDFFormData supports AcroForm PDF files (interactive forms) only.
Data Types: string | char

password — Password to open PDF file
string scalar | character vector

Password to open PDF file, specified as a character vector or a string scalar.
Example: 'skroWhtaM'
Data Types: string | char

Output Arguments
data — Output struct
struct

Output struct. The fields of data correspond to the names of the form fields in the PDF. If the form
field names are not valid struct field names, then the function automatically edits them to construct
valid names.
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See Also
extractFileText | extractHTMLText | readPDFFormData | tokenizedDocument |
writeTextDocument

Topics
“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2018a
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readWordEmbedding
Read word embedding from file

Syntax
emb = readWordEmbedding(filename)

Description
emb = readWordEmbedding(filename) reads the pretrained word embedding stored in text file
or zip file filename. The input file must be a text file with UTF-8 encoding in either the word2vec or
GloVe text embedding format, or a zip file containing a text file of this format.

If the word embedding file contains duplicate words, then the software uses the word vector
corresponding to the last duplicate entry.

Examples

Read Word Embedding from Text File

Read the example word embedding. This model was derived by analyzing text from Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb = 
  wordEmbedding with properties:

     Dimension: 50
    Vocabulary: [1x9999 string]

Explore the word embedding using word2vec and vec2word.

king = word2vec(emb,"king");
man = word2vec(emb,"man");
woman = word2vec(emb,"woman");
word = vec2word(emb,king - man + woman)

word = 
"queen"

Input Arguments
filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.
Data Types: string | char
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Output Arguments
emb — Output word embedding
word embedding

Output word embedding, returned as a wordEmbedding object.

See Also
doc2sequence | fastTextWordEmbedding | tokenizedDocument | trainWordEmbedding |
vec2word | word2vec | wordEmbedding | wordEmbeddingLayer | wordEncoding |
writeWordEmbedding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b
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regexprep
Replace text in words of documents using regular expression

Syntax
newDocuments = regexprep(documents,expression,replace)

Description
Text Analytics Toolbox provides functions for common text preprocessing steps. For example, to
remove punctuation and symbol characters, use erasePunctuation or to remove stem words using
the Porter stemmer, use normalizeWords. For more information, see “Text Data Preparation”.

newDocuments = regexprep(documents,expression,replace) replaces all occurrences of
the regular expression expression in the words of documents with the text in replace.

The function matches each word independently. The match does not have to span the whole word.

Examples

Update Text in Words

Replace words that begin with "s", end "e", and have at least one character between them. To
match whole words, use "^" to match the start of a word and "$" to match the end of the word.

documents = tokenizedDocument([ ...
    "an example of a short sentence" 
    "a second short sentence"])

documents = 
  2x1 tokenizedDocument:

    6 tokens: an example of a short sentence
    4 tokens: a second short sentence

expression = "^s(\w+)e$";
replace = "thing";
newDocuments = regexprep(documents,expression,replace)

newDocuments = 
  2x1 tokenizedDocument:

    6 tokens: an example of a short thing
    4 tokens: a second short thing

If you do not use "^" and "$", then you can match substrings of the words. Replace all vowels with
"_".
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expression = "[aeiou]";
replace = "\_";
newDocuments = regexprep(documents,expression,replace)

newDocuments = 
  2x1 tokenizedDocument:

    6 tokens: _n _x_mpl_ _f _ sh_rt s_nt_nc_
    4 tokens: _ s_c_nd sh_rt s_nt_nc_

Include Captured Tokens in Word Replacement

Replace variations of the word "walk" by capturing the letters that follow "walk".

documents = tokenizedDocument([
    "I walk"
    "they walked"
    "we are walking"])

documents = 
  3x1 tokenizedDocument:

    2 tokens: I walk
    2 tokens: they walked
    3 tokens: we are walking

expression = "walk(\w*)";
replace = "ascend$1";
newDocuments = regexprep(documents,expression,replace)

newDocuments = 
  3x1 tokenizedDocument:

    2 tokens: I ascend
    2 tokens: they ascended
    3 tokens: we are ascending

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

expression — Regular expression
character vector | cell array of character vectors | string array

Regular expression, specified as a character vector, a cell array of character vectors, or a string array.
Each expression can contain characters, metacharacters, operators, tokens, and flags that specify
patterns to match in str.
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The following tables describe the elements of regular expressions.

Metacharacters

Metacharacters represent letters, letter ranges, digits, and space characters. Use them to construct a
generalized pattern of characters.

Metacharacter Description Example
. Any single character, including white

space
'..ain' matches sequences of five
consecutive characters that end with 'ain'.

[c1c2c3] Any character contained within the
square brackets. The following
characters are treated literally: $ | . *
+ ? and - when not used to indicate a
range.

'[rp.]ain' matches 'rain' or 'pain' or
'.ain'.

[^c1c2c3] Any character not contained within the
square brackets. The following
characters are treated literally: $ | . *
+ ? and - when not used to indicate a
range.

'[^*rp]ain' matches all four-letter
sequences that end in 'ain', except 'rain'
and 'pain' and '*ain'. For example, it
matches 'gain', 'lain', or 'vain'.

[c1-c2] Any character in the range of c1 through
c2

'[A-G]' matches a single character in the
range of A through G.

\w Any alphabetic, numeric, or underscore
character. For English character sets, \w
is equivalent to [a-zA-Z_0-9]

'\w*' identifies a word.

\W Any character that is not alphabetic,
numeric, or underscore. For English
character sets, \W is equivalent to [^a-
zA-Z_0-9]

'\W*' identifies a term that is not a word.

\s Any white-space character; equivalent to
[ \f\n\r\t\v]

'\w*n\s' matches words that end with the
letter n, followed by a white-space character.

\S Any non-white-space character;
equivalent to [^ \f\n\r\t\v]

'\d\S' matches a numeric digit followed by
any non-white-space character.

\d Any numeric digit; equivalent to [0-9] '\d*' matches any number of consecutive
digits.

\D Any nondigit character; equivalent to
[^0-9]

'\w*\D\>' matches words that do not end
with a numeric digit.

\oN or \o{N} Character of octal value N '\o{40}' matches the space character,
defined by octal 40.

\xN or \x{N} Character of hexadecimal value N '\x2C' matches the comma character, defined
by hex 2C.

Character Representation

Operator Description
\a Alarm (beep)
\b Backspace
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Operator Description
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\char Any character with special meaning in regular expressions that you want to match literally

(for example, use \\ to match a single backslash)

Quantifiers

Quantifiers specify the number of times a pattern must occur in the matching text.

Quantifier Matches the expression when it
occurs...

Example

expr* 0 or more times consecutively. '\w*' matches a word of any length.
expr? 0 times or 1 time. '\w*(\.m)?' matches words that optionally

end with the extension .m.
expr+ 1 or more times consecutively. '<img src="\w+\.gif">' matches an

<img> HTML tag when the file name contains
one or more characters.

expr{m,n} At least m times, but no more than n times
consecutively.

{0,1} is equivalent to ?.

'\S{4,8}' matches between four and eight
non-white-space characters.

expr{m,} At least m times consecutively.

{0,} and {1,} are equivalent to * and +,
respectively.

'<a href="\w{1,}\.html">' matches an
<a> HTML tag when the file name contains one
or more characters.

expr{n} Exactly n times consecutively.

Equivalent to {n,n}.

'\d{4}' matches four consecutive digits.

Quantifiers can appear in three modes, described in the following table. q represents any of the
quantifiers in the previous table.

Mode Description Example
exprq Greedy expression: match as many characters

as possible.
Given the text '<tr><td><p>text</p></
td>', the expression '</?t.*>' matches all
characters between <tr and /td>:

'<tr><td><p>text</p></td>'

exprq? Lazy expression: match as few characters as
necessary.

Given the text'<tr><td><p>text</p></
td>', the expression '</?t.*?>' ends each
match at the first occurrence of the closing
angle bracket (>):

'<tr>'   '<td>'   '</td>'
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Mode Description Example
exprq+ Possessive expression: match as much as

possible, but do not rescan any portions of the
text.

Given the text'<tr><td><p>text</p></
td>', the expression '</?t.*+>' does not
return any matches, because the closing
angle bracket is captured using .*, and is not
rescanned.

Grouping Operators

Grouping operators allow you to capture tokens, apply one operator to multiple elements, or disable
backtracking in a specific group.

Grouping
Operator

Description Example

(expr) Group elements of the expression and capture
tokens.

'Joh?n\s(\w*)' captures a token that
contains the last name of any person with the
first name John or Jon.

(?:expr) Group, but do not capture tokens. '(?:[aeiou][^aeiou]){2}' matches two
consecutive patterns of a vowel followed by a
nonvowel, such as 'anon'.

Without grouping, '[aeiou][^aeiou]
{2}'matches a vowel followed by two
nonvowels.

(?>expr) Group atomically. Do not backtrack within the
group to complete the match, and do not
capture tokens.

'A(?>.*)Z' does not match 'AtoZ',
although 'A(?:.*)Z' does. Using the atomic
group, Z is captured using .* and is not
rescanned.

(expr1|expr2) Match expression expr1 or expression
expr2.

If there is a match with expr1, then expr2 is
ignored.

You can include ?: or ?> after the opening
parenthesis to suppress tokens or group
atomically.

'(let|tel)\w+' matches words that start
with let or tel.

Anchors

Anchors in the expression match the beginning or end of the input text or word.

Anchor Matches the... Example
^expr Beginning of the input text. '^M\w*' matches a word starting with M at

the beginning of the text.
expr$ End of the input text. '\w*m$' matches words ending with m at the

end of the text.
\<expr Beginning of a word. '\<n\w*' matches any words starting with

n.
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Anchor Matches the... Example
expr\> End of a word. '\w*e\>' matches any words ending with e.

Lookaround Assertions

Lookaround assertions look for patterns that immediately precede or follow the intended match, but
are not part of the match.

The pointer remains at the current location, and characters that correspond to the test expression
are not captured or discarded. Therefore, lookahead assertions can match overlapping character
groups.

Lookaround
Assertion

Description Example

expr(?=test) Look ahead for characters that match test. '\w*(?=ing)' matches terms that are
followed by ing, such as 'Fly' and 'fall'
in the input text 'Flying, not falling.'

expr(?!test) Look ahead for characters that do not
match test.

'i(?!ng)' matches instances of the letter i
that are not followed by ng.

(?<=test)expr Look behind for characters that match
test.

'(?<=re)\w*' matches terms that follow
're', such as 'new', 'use', and 'cycle'
in the input text 'renew, reuse,
recycle'

(?<!test)expr Look behind for characters that do not
match test.

'(?<!\d)(\d)(?!\d)' matches single-
digit numbers (digits that do not precede or
follow other digits).

If you specify a lookahead assertion before an expression, the operation is equivalent to a logical AND.

Operation Description Example
(?=test)expr Match both test and expr. '(?=[a-z])[^aeiou]' matches

consonants.
(?!test)expr Match expr and do not match test. '(?![aeiou])[a-z]' matches consonants.

Logical and Conditional Operators

Logical and conditional operators allow you to test the state of a given condition, and then use the
outcome to determine which pattern, if any, to match next. These operators support logical OR, and
if or if/else conditions.

Conditions can be tokens, lookaround operators, or dynamic expressions of the form (?@cmd).
Dynamic expressions must return a logical or numeric value.

Conditional Operator Description Example
expr1|expr2 Match expression expr1 or expression

expr2.

If there is a match with expr1, then
expr2 is ignored.

'(let|tel)\w+' matches words that
start with let or tel.
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Conditional Operator Description Example
(?(cond)expr) If condition cond is true, then match

expr.
'(?(?@ispc)[A-Z]:\\)' matches a
drive name, such as C:\, when run on a
Windows® system.

(?(cond)expr1|expr2) If condition cond is true, then match
expr1. Otherwise, match expr2.

'Mr(s?)\..*?(?(1)her|his) \w*'
matches text that includes her when
the text begins with Mrs, or that
includes his when the text begins with
Mr.

Token Operators

Tokens are portions of the matched text that you define by enclosing part of the regular expression in
parentheses. You can refer to a token by its sequence in the text (an ordinal token), or assign names
to tokens for easier code maintenance and readable output.

Ordinal Token Operator Description Example
(expr) Capture in a token the characters that

match the enclosed expression.
'Joh?n\s(\w*)' captures a token that
contains the last name of any person
with the first name John or Jon.

\N Match the Nth token. '<(\w+).*>.*</\1>' captures tokens
for HTML tags, such as 'title' from
the text '<title>Some text</
title>'.

(?(N)expr1|expr2) If the Nth token is found, then match
expr1. Otherwise, match expr2.

'Mr(s?)\..*?(?(1)her|his) \w*'
matches text that includes her when
the text begins with Mrs, or that
includes his when the text begins with
Mr.

Named Token Operator Description Example
(?<name>expr) Capture in a named token the

characters that match the enclosed
expression.

'(?<month>\d+)-(?<day>\d+)-(?
<yr>\d+)' creates named tokens for
the month, day, and year in an input
date of the form mm-dd-yy.

\k<name> Match the token referred to by name. '<(?<tag>\w+).*>.*</\k<tag>>'
captures tokens for HTML tags, such as
'title' from the text '<title>Some
text</title>'.

(?(name)expr1|expr2) If the named token is found, then
match expr1. Otherwise, match
expr2.

'Mr(?<sex>s?)\..*?(?(sex)her|
his) \w*' matches text that includes
her when the text begins with Mrs, or
that includes his when the text begins
with Mr.

Note If an expression has nested parentheses, MATLAB® captures tokens that correspond to the
outermost set of parentheses. For example, given the search pattern '(and(y|rew))', MATLAB
creates a token for 'andrew' but not for 'y' or 'rew'.
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Dynamic Regular Expressions

Dynamic expressions allow you to execute a MATLAB command or a regular expression to determine
the text to match.

The parentheses that enclose dynamic expressions do not create a capturing group.

Operator Description Example
(??expr) Parse expr and include the resulting term

in the match expression.

When parsed, expr must correspond to a
complete, valid regular expression.
Dynamic expressions that use the backslash
escape character (\) require two
backslashes: one for the initial parsing of
expr, and one for the complete match.

'^(\d+)((??\\w{$1}))' determines
how many characters to match by reading
a digit at the beginning of the match. The
dynamic expression is enclosed in a
second set of parentheses so that the
resulting match is captured in a token. For
instance, matching '5XXXXX' captures
tokens for '5' and 'XXXXX'.

(??@cmd) Execute the MATLAB command
represented by cmd, and include the output
returned by the command in the match
expression.

'(.{2,}).?(??@fliplr($1))' finds
palindromes that are at least four
characters long, such as 'abba'.

(?@cmd) Execute the MATLAB command
represented by cmd, but discard any output
the command returns. (Helpful for
diagnosing regular expressions.)

'\w*?(\w)(?@disp($1))\1\w*'
matches words that include double letters
(such as pp), and displays intermediate
results.

Within dynamic expressions, use the following operators to define replacement text.

Replacement Operator Description
$& or $0 Portion of the input text that is currently a match
$` Portion of the input text that precedes the current match
$' Portion of the input text that follows the current match (use $'' to represent $')
$N Nth token
$<name> Named token
${cmd} Output returned when MATLAB executes the command, cmd

Comments

Characters Description Example
(?#comment) Insert a comment in the regular expression.

The comment text is ignored when
matching the input.

'(?# Initial digit)\<\d\w+'
includes a comment, and matches words
that begin with a number.

Search Flags

Search flags modify the behavior for matching expressions. An alternative to using a search flag
within an expression is to pass an option input argument.
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Flag Description
(?-i) Match letter case (default for regexp and regexprep).
(?i) Do not match letter case (default for regexpi).
(?s) Match dot (.) in the pattern with any character (default).
(?-s) Match dot in the pattern with any character that is not a newline character.
(?-m) Match the ^ and $ metacharacters at the beginning and end of text (default).
(?m) Match the ^ and $ metacharacters at the beginning and end of a line.
(?-x) Include space characters and comments when matching (default).
(?x) Ignore space characters and comments when matching. Use '\ ' and '\#' to

match space and # characters.

The expression that the flag modifies can appear either after the parentheses, such as

(?i)\w*

or inside the parentheses and separated from the flag with a colon (:), such as

(?i:\w*)

The latter syntax allows you to change the behavior for part of a larger expression.
Data Types: char | cell | string

replace — Replacement text
character vector | cell array of character vectors | string array

Replacement text, specified as a character vector, a cell array of character vectors, or a string array,
as follows:

• If replace is a single character vector and expression is a cell array of character vectors, then
regexprep uses the same replacement text for each expression.

• If replace is a cell array of N character vectors and expression is a single character vector,
then regexprep attempts N matches and replacements.

• If both replace and expression are cell arrays of character vectors, then they must contain the
same number of elements. regexprep pairs each replace element with its corresponding
element in expression.

The replacement text can include regular characters, special characters (such as tabs or new lines),
or replacement operators, as shown in the following tables.

Replacement Operator Description
$& or $0 Portion of the input text that is currently a match
$` Portion of the input text that precedes the current match
$' Portion of the input text that follows the current match (use $'' to represent $')
$N Nth token
$<name> Named token
${cmd} Output returned when MATLAB executes the command, cmd
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Operator Description
\a Alarm (beep)
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\char Any character with special meaning in regular expressions that you want to match literally

(for example, use \\ to match a single backslash)

Data Types: char | cell | string

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

Tips
• Text Analytics Toolbox provides functions for common text preprocessing steps. For example, to

remove punctuation and symbol characters, use erasePunctuation or to remove stem words
using the Porter stemmer, use normalizeWords. For more information, see “Text Data
Preparation”.

See Also
decodeHTMLEntities | erasePunctuation | eraseTags | eraseURLs | normalizeWords |
removeLongWords | removeShortWords | removeWords | replace | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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removeDocument
Remove documents from bag-of-words or bag-of-n-grams model

Syntax
newBag = removeDocument(bag,idx)

Description
newBag = removeDocument(bag,idx) removes the documents with indices specified by idx from
the bag-of-words or bag-of-n-grams model bag. If the removed documents contain words or n-grams
that do not appear in the remaining documents, then the function also removes these words or n-
grams from bag.

Examples

Remove Documents from Bag-of-Words Model

Remove selected documents from a bag-of-words model.

documents = tokenizedDocument([ ...
    "an example of a short sentence" 
    "a second short sentence"
    "a third example"
    "a final sentence"]);
bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [4x9 double]
      Vocabulary: [1x9 string]
        NumWords: 9
    NumDocuments: 4

Remove the first and third documents from bag.

idx = [1 3];
newBag = removeDocument(bag,idx)

newBag = 
  bagOfWords with properties:

          Counts: [2x5 double]
      Vocabulary: ["a"    "short"    "sentence"    "second"    "final"]
        NumWords: 5
    NumDocuments: 2

Remove the same documents using logical indices.
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idx = logical([1 0 1 0]);
newBag = removeDocument(bag,idx)

newBag = 
  bagOfWords with properties:

          Counts: [2x5 double]
      Vocabulary: ["a"    "short"    "sentence"    "second"    "final"]
        NumWords: 5
    NumDocuments: 2

Input Arguments
bag — Input bag-of-words or bag-of-n-grams model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a bagOfNgrams
object.

idx — Indices of documents to remove
vector of numeric indices | vector of logical indices

Indices of documents to remove, specified as a vector of numeric indices or a vector of logical indices.
Example: [2 4 6]
Example: [0 1 0 1 0 1]

Output Arguments
newBag — Output model
bagOfWords object | bagOfNgrams object

Output model, returned as a bagOfWords object or a bagOfNgrams object. The type of newBag is
the same as the type of bag.

See Also
addDocument | bagOfNgrams | bagOfWords | removeEmptyDocuments | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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removeEmptyDocuments
Remove empty documents from tokenized document array, bag-of-words model, or bag-of-n-grams
model

Syntax
newDocuments = removeEmptyDocuments(documents)
newBag = removeEmptyDocuments(bag)
[ ___ ,idx] = removeEmptyDocuments( ___ )

Description
newDocuments = removeEmptyDocuments(documents) removes documents which have no
words from documents.

newBag = removeEmptyDocuments(bag) removes documents which have no words or n-grams
from the bag-of-words or bag-of-n-grams model bag.

[ ___ ,idx] = removeEmptyDocuments( ___ ) also returns the indices of the removed
documents.

Examples

Remove Empty Documents from Array

Remove documents containing no words from an array of tokenized documents.

Create an array of tokenized documents which includes empty documents.

documents = tokenizedDocument([
    "an example of a short sentence"
    ""
    "a second short sentence"
    ""])

documents = 
  4x1 tokenizedDocument:

    6 tokens: an example of a short sentence
    0 tokens:
    4 tokens: a second short sentence
    0 tokens:

Remove the empty documents.

newDocuments = removeEmptyDocuments(documents)

newDocuments = 
  2x1 tokenizedDocument:
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    6 tokens: an example of a short sentence
    4 tokens: a second short sentence

Remove Empty Documents from Bag-of-Words Model

Remove documents containing no words from bag-of-words model.

Create a bag-of-words model from an array of tokenized documents.

documents = tokenizedDocument([
    "An example of a short sentence."
    ""
    "A second short sentence."
    ""]);
bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [4x9 double]
      Vocabulary: [1x9 string]
        NumWords: 9
    NumDocuments: 4

Remove the empty documents from the bag-of-words model.

newBag = removeEmptyDocuments(bag)

newBag = 
  bagOfWords with properties:

          Counts: [2x9 double]
      Vocabulary: [1x9 string]
        NumWords: 9
    NumDocuments: 2

Remove Documents and Corresponding Labels

Remove documents containing no words from an array and use the indices of removed documents to
remove the corresponding labels also.

Create an array of tokenized documents which includes empty documents.

documents = tokenizedDocument([
    "an example of a short sentence"
    ""
    "a second short sentence"
    ""])

documents = 
  4x1 tokenizedDocument:
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    6 tokens: an example of a short sentence
    0 tokens:
    4 tokens: a second short sentence
    0 tokens:

Create a vector of labels.

labels = ["T"; "F"; "F"; "T"]

labels = 4x1 string
    "T"
    "F"
    "F"
    "T"

Remove the empty documents and get the indices of the removed documents.

[newDocuments, idx] = removeEmptyDocuments(documents)

newDocuments = 
  2x1 tokenizedDocument:

    6 tokens: an example of a short sentence
    4 tokens: a second short sentence

idx = 2×1

     2
     4

Remove the corresponding labels from labels.

labels(idx) = []

labels = 2x1 string
    "T"
    "F"

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words or bag-of-n-grams model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a bagOfNgrams
object.
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Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

newBag — Output model
bagOfWords object | bagOfNgrams object

Output model, returned as a bagOfWords object or a bagOfNgrams object. The type of newBag is
the same as the type of bag.

idx — Indices of removed documents
vector of positive integers

Indices of removed documents, returned as a vector of positive integers.

See Also
addDocument | bagOfNgrams | bagOfWords | removeDocument | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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removeInfrequentNgrams
Remove infrequently seen n-grams from bag-of-n-grams model

Syntax
newBag = removeInfrequentNgrams(bag,count)
newBag = removeInfrequentNgrams(bag,count,'NgramLengths',lengths)

Description
newBag = removeInfrequentNgrams(bag,count) removes the n-grams that appear at most
count times in total from the bag-of-n-grams model bag.

newBag = removeInfrequentNgrams(bag,count,'NgramLengths',lengths) only removes n-
grams with lengths specified by lengths.

Examples

Remove Infrequent N-Grams from Bag-of-N-Grams Model

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-n-grams model. Specify to count bigrams (pairs of words) and trigrams (triples of
words).

bag = bagOfNgrams(documents,'NgramLengths',[2 3])

bag = 
  bagOfNgrams with properties:

          Counts: [154x18022 double]
      Vocabulary: [1x3092 string]
          Ngrams: [18022x3 string]
    NgramLengths: [2 3]
       NumNgrams: 18022
    NumDocuments: 154

Remove n-grams of any length that appear two or fewer times in total.

bag = removeInfrequentNgrams(bag,2)

bag = 
  bagOfNgrams with properties:
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          Counts: [154x103 double]
      Vocabulary: [1x73 string]
          Ngrams: [103x3 string]
    NgramLengths: [2 3]
       NumNgrams: 103
    NumDocuments: 154

Remove bigrams that appear four or fewer times in total.

bag = removeInfrequentNgrams(bag,4,'NgramLengths',2)

bag = 
  bagOfNgrams with properties:

          Counts: [154x41 double]
      Vocabulary: [1x30 string]
          Ngrams: [41x3 string]
    NgramLengths: [2 3]
       NumNgrams: 41
    NumDocuments: 154

Input Arguments
bag — Input bag-of-n-grams model
bagOfNgrams object

Input bag-of-n-grams model, specified as a bagOfNgrams object.

count — Count threshold
positive integer

Count threshold, specified as a positive integer. The function removes the n-grams that appear count
times in total or fewer.

lengths — N-gram lengths
positive integer | vector of positive integers

N-gram lengths, specified as a positive integer or a vector of positive integers.

If you specify lengths, the function removes infrequent n-grams of the specified lengths only. If you
do not specify lengths, then the function removes infrequent n-grams regardless of length.
Example: [1 2 3]

Output Arguments
newBag — Output bag-of-n-grams model
bagOfNgrams object

Output bag-of-n-grams model, returned as a bagOfNgrams object.
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See Also
bagOfNgrams | bagOfWords | removeEmptyDocuments | removeInfrequentWords |
removeNgrams | tfidf | tokenizedDocument | topkngrams

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2018a
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removeInfrequentWords
Remove words with low counts from bag-of-words model

Syntax
newBag = removeInfrequentWords(bag,count)

Description
newBag = removeInfrequentWords(bag,count) removes the words that appear at most count
times in total from the bag-of-words model bag.

Examples

Remove Infrequent Words

Remove the words that appear two times or fewer from a bag-of-words model.

Create a bag-of-words model from an array of tokenized documents.

documents = tokenizedDocument([
    "an example of a short sentence"
    "a second short sentence"
    "another example"
    "a short example"]);
bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [4x8 double]
      Vocabulary: [1x8 string]
        NumWords: 8
    NumDocuments: 4

Remove the words that appear two times or fewer from the bag-of-words model.

count = 2;
newBag = removeInfrequentWords(bag,count)

newBag = 
  bagOfWords with properties:

          Counts: [4x3 double]
      Vocabulary: ["example"    "a"    "short"]
        NumWords: 3
    NumDocuments: 4
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Input Arguments
bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

count — Count threshold to remove words
positive integer

Count threshold to remove words, specified as a positive integer. The function removes the words
that appear count times in total or fewer.

See Also
bagOfNgrams | bagOfWords | removeEmptyDocuments | removeInfrequentNgrams |
removeWords | tfidf | tokenizedDocument | topkwords

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”

Introduced in R2017b
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removeLongWords
Remove long words from documents or bag-of-words model

Syntax
newDocuments = removeLongWords(documents,len)
newBag = removeLongWords(bag,len)

Description
newDocuments = removeLongWords(documents,len) removes words of length len or greater
from documents.

newBag = removeLongWords(bag,len) removes words of length len or greater from the
bagOfWords object bag.

Examples

Remove Long Words from Document

Remove the words with seven or greater characters from a document.

document = tokenizedDocument("An example of a short sentence");
newDocument = removeLongWords(document,7)

newDocument = 
  tokenizedDocument:

   4 tokens: An of a short

Remove Long Words from Bag-of-Words Model

Remove the words with seven or greater characters from a bag-of-words model.

documents = tokenizedDocument([ ...
    "an example of a short sentence"
    "a second short sentence"]);
bag = bagOfWords(documents);
newBag = removeLongWords(bag,7)

newBag = 
  bagOfWords with properties:

          Counts: [2x5 double]
      Vocabulary: ["an"    "of"    "a"    "short"    "second"]
        NumWords: 5
    NumDocuments: 2
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Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

len — Minimum length of words to remove
positive integer

Minimum length of words to remove, specified as a positive integer. The function removes words with
len or greater characters.

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

newBag — Output bag-of-words model
bagOfWords object

Output bag-of-words model, returned as a bagOfWords object.

See Also
bagOfNgrams | bagOfWords | normalizeWords | removeShortWords | removeStopWords |
removeWords | stopWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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removeNgrams
Remove n-grams from bag-of-n-grams model

Syntax
newBag = removeNgrams(bag,ngrams)
newBag = removeNgrams(bag,idx)

Description
newBag = removeNgrams(bag,ngrams) removes the specified n-grams from the bag-of-n-grams
model bag.

newBag = removeNgrams(bag,idx) specifies n-grams by numeric or logical indices in
bag.Ngrams. This syntax is the same as newBag = removeNgrams(bag,bag.Ngrams(idx,:)).

Examples

Remove N-Grams from Bag-of-N-Grams Model

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create bag-of-n-grams model.

bag = bagOfNgrams(documents)

bag = 
  bagOfNgrams with properties:

          Counts: [154×8799 double]
      Vocabulary: [1×3092 string]
          Ngrams: [8799×2 string]
    NgramLengths: 2
       NumNgrams: 8799
    NumDocuments: 154

View the top five n-grams.

topkngrams(bag,5)

ans=5×3 table
         Ngram          Count    NgramLength
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    ________________    _____    ___________

    "thou"    "art"      34           2     
    "mine"    "eye"      15           2     
    "thy"     "self"     14           2     
    "thou"    "dost"     13           2     
    "mine"    "own"      13           2     

Remove the n-grams ["thou" "art"] and ["thou" "dost"] from the model. View the new top 5
n-grams.

ngrams = [...
    "thou" "art"
    "thou" "dost"];
bag = removeNgrams(bag,ngrams);
topkngrams(bag,5)

ans=5×3 table
          Ngram          Count    NgramLength
    _________________    _____    ___________

    "mine"    "eye"       15           2     
    "thy"     "self"      14           2     
    "mine"    "own"       13           2     
    "thy"     "sweet"     12           2     
    "thy"     "love"      11           2     

Remove N-Grams from Bag-of-N-Grams Model by Index

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create bag-of-n-grams model.

bag = bagOfNgrams(documents)

bag = 
  bagOfNgrams with properties:

          Counts: [154x8799 double]
      Vocabulary: [1x3092 string]
          Ngrams: [8799x2 string]
    NgramLengths: 2
       NumNgrams: 8799
    NumDocuments: 154
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View the first ten n-grams in the model.

bag.Ngrams(1:10,:)

ans = 10x2 string
    "fairest"      "creatures"
    "creatures"    "desire"   
    "desire"       "increase" 
    "increase"     "thereby"  
    "thereby"      "beautys"  
    "beautys"      "rose"     
    "rose"         "might"    
    "might"        "never"    
    "never"        "die"      
    "die"          "riper"    

Remove the 9th and 10th n-grams from the model. View the new list of the first ten n-grams.

idx = [9 10];
bag = removeNgrams(bag,idx);
bag.Ngrams(1:10,:)

ans = 10x2 string
    "fairest"      "creatures"
    "creatures"    "desire"   
    "desire"       "increase" 
    "increase"     "thereby"  
    "thereby"      "beautys"  
    "beautys"      "rose"     
    "rose"         "might"    
    "might"        "never"    
    "riper"        "time"     
    "time"         "decease"  

Input Arguments
bag — Input bag-of-n-grams model
bagOfNgrams object

Input bag-of-n-grams model, specified as a bagOfNgrams object.

ngrams — N-grams to remove
string array | character vector | cell array of character vectors

N-grams to remove, specified as a string array, character vector, or a cell array of character vectors.

If ngrams is a string array or cell array, then it has size NumNgrams-by-maxN , where NumNgrams is
the number of n-grams, and maxN is the length of the largest n-gram. If ngrams is a character vector,
then it represents a single word (unigram).

The value of ngrams(i,j) is the jth word of the ith n-gram. If the number of words in the ith n-
gram is less than maxN, then the remaining entries of the ith row of ngrams are empty.
Example: ["An" ""; "An example"; "example" ""]
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Data Types: string | char | cell

idx — Indices of n-grams to remove
vector of numeric indices | vector of logical indices

Indices of n-grams to remove, specified as a vector of numeric indices or a vector of logical indices.
The indices in idx correspond to the rows of the bag.Ngrams.
Example: [1 5 10]

See Also
bagOfNgrams | bagOfWords | removeEmptyDocuments | removeInfrequentNgrams |
removeWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2018a
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removeShortWords
Remove short words from documents or bag-of-words model

Syntax
newDocuments = removeShortWords(documents,len)
newBag = removeShortWords(bag,len)

Description
newDocuments = removeShortWords(documents,len) removes words of length len or less
from documents.

newBag = removeShortWords(bag,len) removes words of length len or less from the
bagOfWords object bag.

Examples

Remove Short Words from Document

Remove the words with two or fewer characters from a document.

document = tokenizedDocument("An example of a short sentence");
newDocument = removeShortWords(document,2)

newDocument = 
  tokenizedDocument:

   3 tokens: example short sentence

Remove Short Words from Bag-of-Words Model

Remove the words with two or fewer characters from a bag-of-words model.

documents = tokenizedDocument([ ...
    "an example of a short sentence"
    "a second short sentence"]);
bag = bagOfWords(documents);
newBag = removeShortWords(bag,2)

newBag = 
  bagOfWords with properties:

          Counts: [2x4 double]
      Vocabulary: ["example"    "short"    "sentence"    "second"]
        NumWords: 4
    NumDocuments: 2
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Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

len — Maximum length of words to remove
positive integer

Maximum length of words to remove, specified as a positive integer. The function removes words with
len or fewer characters.

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

newBag — Output bag-of-words model
bagOfWords object

Output bag-of-words model, returned as a bagOfWords object.

See Also
bagOfNgrams | bagOfWords | normalizeWords | removeLongWords | removeWords | stopWords
| tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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removeStopWords
Remove stop words from documents

Syntax
newDocuments = removeStopWords(documents)

Description
Words like "a", "and", "to", and "the" (known as stop words) can add noise to data. Use this function
to remove stop words before analysis.

The function supports English, Japanese, German, and Korean text. To learn how to use
removeStopWords for other languages, see “Language Considerations” on page 1-292.

newDocuments = removeStopWords(documents) removes the stop words from the
tokenizedDocument array documents.

Tip Use removeStopWords before using the normalizeWords function as removeStopWords uses
information that is removed by this function.

Examples

Remove Stop Words from Documents

Remove the stop words from an array of documents using removeStopWords. The
tokenizedDocument function detects that the documents are in English, so removeStopWords
removes English stop words.

documents = tokenizedDocument([
    "an example of a short sentence" 
    "a second short sentence"]);
newDocuments = removeStopWords(documents)

newDocuments = 
  2x1 tokenizedDocument:

    3 tokens: example short sentence
    3 tokens: second short sentence

Remove Japanese Stop Words

Tokenize Japanese text using tokenizedDocument. The function automatically detects Japanese
text.
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str = [
    "ここは静かなので、とても穏やかです"
    "企業内の顧客データを利用し、今年の売り上げを調べることが出来た。"
    "私は先生です。私は英語を教えています。"];
documents = tokenizedDocument(str);

Remove stop words using removeStopWords. The function uses the language details from
documents to determine which language stop words to remove.

documents = removeStopWords(documents)

documents = 
  3x1 tokenizedDocument:

     4 tokens: 静か 、 とても 穏やか
    10 tokens: 企業 顧客 データ 利用 、 今年 売り上げ 調べる 出来 。
     5 tokens: 先生 。 英語 教え 。

Remove German Stop Words from Documents

Tokenize German text using tokenizedDocument. The function automatically detects German text.

str = [
    "Guten Morgen. Wie geht es dir?"
    "Heute wird ein guter Tag."];
documents = tokenizedDocument(str)

documents = 
  2x1 tokenizedDocument:

    8 tokens: Guten Morgen . Wie geht es dir ?
    6 tokens: Heute wird ein guter Tag .

Remove stop words using the removeStopWords function. The function uses the language details
from documents to determine which language stop words to remove.

documents = removeStopWords(documents)

documents = 
  2x1 tokenizedDocument:

    5 tokens: Guten Morgen . geht ?
    5 tokens: Heute wird guter Tag .

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.
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Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

More About
Language Considerations

The stopWords and removeStopWords functions support English, Japanese, German, and Korean
stop words only.

To remove stop words from other languages, use removeWords and specify your own stop words to
remove.

Algorithms
Language Details

tokenizedDocument objects contain details about the tokens including language details. The
language details of the input documents determine the behavior of removeStopWords. The
tokenizedDocument function, by default, automatically detects the language of the input text. To
specify the language details manually, use the 'Language' name-value pair argument of
tokenizedDocument. To view the token details, use the tokenDetails function.

See Also
bagOfWords | normalizeWords | removeLongWords | removeShortWords | removeWords |
stopWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Language Considerations”
“Japanese Language Support”
“German Language Support”

Introduced in R2018b
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removeWords
Remove selected words from documents or bag-of-words model

Syntax
newDocuments = removeWords(documents,words)
newDocuments = removeWords(documents,idx)

newBag = removeWords(bag,words)
newBag = removeWords(bag,idx)

Description
newDocuments = removeWords(documents,words) removes the specified words from
documents.

newDocuments = removeWords(documents,idx) removes words by specifying the numeric or
logical indices idx of the words in documents.Vocabulary. This syntax is the same as
newDocuments = removeWords(documents,documents.Vocabulary(idx)).

newBag = removeWords(bag,words) removes the specified words from the bag-of-words model
bag.

newBag = removeWords(bag,idx) removes words by specifying the numeric or logical indices
idx of the words in bag.Vocabulary. This syntax is the same as newBag =
removeWords(bag,bag.Vocabulary(idx)).

Examples

Remove Words from Documents

Remove words from an array of documents by inputting a string array of words to removeWords.

Create an array of tokenized documents.

documents = tokenizedDocument([
    "an example of a short sentence" 
    "a second short sentence"]);

Remove the words "short" and "second".

words = ["short" "second"];
newDocuments = removeWords(documents,words)

newDocuments = 
  2x1 tokenizedDocument:

    5 tokens: an example of a sentence
    2 tokens: a sentence
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Remove Custom List of Stop Words from Documents

To remove the default list of stop words using the language details of documents, use
removeStopWords.

To remove a custom list of stop words, use the removeWords function. You can use the stop word list
returned by the stopWords function as a starting point.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

View the first few documents.

documents(1:5)

ans = 
  5x1 tokenizedDocument:

    70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
    71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
    65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
    71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
    61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet

Create a list of stop words starting with the output of the stopWords function.

customStopWords = [stopWords "thy" "thee" "thou" "dost" "doth"];

Remove the custom stop words from the documents and view the first few documents.

documents = removeWords(documents,customStopWords);
documents(1:5)

ans = 
  5x1 tokenizedDocument:

    62 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory contracted thine own bright eyes feedst lights flame selfsubstantial fuel making famine abundance lies self foe sweet self cruel art worlds fresh ornament herald gaudy spring thine own bud buriest content tender churl makst waste niggarding pity world else glutton eat worlds due grave
    61 tokens: forty winters shall besiege brow dig deep trenches beautys field youths proud livery gazed tatterd weed small worth held asked beauty lies treasure lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd beautys couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made art old blood warm feelst cold
    52 tokens: look glass tell face viewest time face form another whose fresh repair renewest beguile world unbless mother fair whose uneard womb disdains tillage husbandry fond tomb selflove stop posterity art mothers glass calls back lovely april prime windows thine age shalt despite wrinkles golden time live rememberd die single thine image dies
    52 tokens: unthrifty loveliness why spend upon self beautys legacy natures bequest gives nothing lend frank lends free beauteous niggard why abuse bounteous largess give profitless usurer why great sum sums yet canst live traffic self alone self sweet self deceive nature calls gone acceptable audit canst leave unused beauty tombed lives th executor
    59 tokens: hours gentle work frame lovely gaze every eye dwell play tyrants same unfair fairly excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet
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Remove Words from Documents by Index

Remove words from documents by inputting a vector of numeric indices to removeWords.

Create an array of tokenized documents.

documents = tokenizedDocument([
    "I love MATLAB"
    "I love MathWorks"])

documents = 
  2x1 tokenizedDocument:

    3 tokens: I love MATLAB
    3 tokens: I love MathWorks

View the vocabulary of documents.

documents.Vocabulary

ans = 1x4 string
    "I"    "love"    "MATLAB"    "MathWorks"

Remove the first and third words of the vocabulary from the documents by specifying the numeric
indices [1 3].

idx = [1 3];
newDocuments = removeWords(documents,idx)

newDocuments = 
  2x1 tokenizedDocument:

    1 tokens: love
    2 tokens: love MathWorks

Alternatively, you can specify logical indices.

idx = logical([1 0 1 0]);
newDocuments = removeWords(documents,idx)

newDocuments = 
  2x1 tokenizedDocument:

    1 tokens: love
    2 tokens: love MathWorks

Remove Stop Words from Bag-of-Words Model

Remove the stop words from a bag-of-words model by inputting a list of stop words to removeWords.
Stop words are words such as "a", "the", and "in" which are commonly removed from text before
analysis.
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documents = tokenizedDocument([
    "an example of a short sentence" 
    "a second short sentence"]);
bag = bagOfWords(documents);
newBag = removeWords(bag,stopWords)

newBag = 
  bagOfWords with properties:

          Counts: [2x4 double]
      Vocabulary: ["example"    "short"    "sentence"    "second"]
        NumWords: 4
    NumDocuments: 2

Remove Words from Bag-of-Words Model by Index

Remove words from a bag-of-words model by inputting a vector of numeric indices to removeWords.

Create an array of tokenized documents.

documents = tokenizedDocument([
    "I love MATLAB"
    "I love MathWorks"]);
bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [2x4 double]
      Vocabulary: ["I"    "love"    "MATLAB"    "MathWorks"]
        NumWords: 4
    NumDocuments: 2

View the vocabulary of bag.

bag.Vocabulary

ans = 1x4 string
    "I"    "love"    "MATLAB"    "MathWorks"

Remove the first and third words of the vocabulary from the bag-of-words model by specifying the
numeric indices [1 3].

idx = [1 3];
newBag = removeWords(bag,idx)

newBag = 
  bagOfWords with properties:

          Counts: [2x2 double]
      Vocabulary: ["love"    "MathWorks"]
        NumWords: 2
    NumDocuments: 2
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Alternatively, you can specify logical indices.

idx = logical([1 0 1 0]);
newBag = removeWords(bag,idx)

newBag = 
  bagOfWords with properties:

          Counts: [2x2 double]
      Vocabulary: ["love"    "MathWorks"]
        NumWords: 2
    NumDocuments: 2

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

words — Words to remove
string vector | character vector | cell array of character vectors

Words to remove, specified as a string vector, character vector, or cell array of character vectors. If
you specify words as a character vector, then the function treats it as a single word.
Data Types: string | char | cell

idx — Indices of words in vocabulary to remove
vector of numeric indices | vector of logical indices

Indices of words to remove, specified as a vector of numeric indices or a vector of logical indices. The
indices in idx correspond to the locations of the words in the Vocabulary property of the input
documents or bag-of-words model.
Example: [1 5 10]

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

newBag — Output bag-of-words model
bagOfWords object

Output bag-of-words model, returned as a bagOfWords object.
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See Also
bagOfNgrams | bagOfWords | normalizeWords | removeEmptyDocuments |
removeInfrequentWords | removeLongWords | removeNgrams | removeShortWords |
stopWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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replace
Replace substrings in documents

Syntax
newDocuments = replace(documents,old,new)

Description
Use replace to replace substrings of the words in documents. To replace entire words and n-grams
in documents, use the replaceWords and replaceNgrams functions respectively.

newDocuments = replace(documents,old,new) replaces all occurrences of old in documents
with new.

Examples

Replace Substrings in Documents

Replace words in a document array.

documents = tokenizedDocument([
    "an extreme example"
    "another extreme example"])

documents = 
  2x1 tokenizedDocument:

    3 tokens: an extreme example
    3 tokens: another extreme example

newDocuments = replace(documents,"example","sentence")

newDocuments = 
  2x1 tokenizedDocument:

    3 tokens: an extreme sentence
    3 tokens: another extreme sentence

Replace substrings of the words.

newDocuments = replace(documents,"ex","X-")

newDocuments = 
  2x1 tokenizedDocument:

    3 tokens: an X-treme X-ample
    3 tokens: another X-treme X-ample
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Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

old — Substring to replace
string array | character vector | cell array of character vectors

Substring to replace, specified as a string array, character vector, or cell array of character vectors.
Data Types: string | char | cell

new — New substring
string array | character vector | cell array of character vectors

New substring, specified as a string array, character vector, or cell array of character vectors.
Data Types: string | char | cell

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also
bagOfWords | decodeHTMLEntities | normalizeWords | regexprep | replaceNgrams |
replaceWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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replaceWords
Replace words in documents

Syntax
newDocuments = replaceWords(documents,oldWords,newWords)

Description
newDocuments = replaceWords(documents,oldWords,newWords) updates the specified
documents by replacing the words in oldWords with the corresponding words in newWords.

Examples

Replace Words in Documents

Use the replaceWords function to replace shorthand words with their corresponding full words.

Create an array of tokenized documents.

str = [ ...
    "Increased activity Mon to Fri."
    "Reduced activity Sat to Sun."];
documents = tokenizedDocument(str)

documents = 
  2x1 tokenizedDocument:

    6 tokens: Increased activity Mon to Fri .
    6 tokens: Reduced activity Sat to Sun .

Replace the shorthand words with their corresponding full words.

oldWords = ["Mon" "Tue" "Wed" "Thu" "Fri" "Sat" "Sun"];
newWords = ["Monday" "Tuesday" "Wednesday" "Thursday" "Friday" "Saturday" "Sunday"];
documents = replaceWords(documents,oldWords,newWords)

documents = 
  2x1 tokenizedDocument:

    6 tokens: Increased activity Monday to Friday .
    6 tokens: Reduced activity Saturday to Sunday .

Input Arguments
documents — Input documents
tokenizedDocument array
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Input documents, specified as a tokenizedDocument array.

oldWords — Words to replace
string array | character vector | cell array of character vectors

Words to replace, specified as a string array, character vector, or cell array of character vectors.
Data Types: string | char | cell

newWords — New words
string array | character vector | cell array of character vectors

New words, specified as a string array, character vector, or cell array of character vectors.

newWords must contain one word or be the same size as oldWords. If newWords contains only one
word, then the function replaces all the words in oldWords with this word.
Data Types: string | char | cell

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also
decodeHTMLEntities | normalizeWords | replaceNgrams | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2019a
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replaceNgrams
Replace n-grams in documents

Syntax
newDocuments = replaceNgrams(documents,oldNgrams,newNgrams)

Description
newDocuments = replaceNgrams(documents,oldNgrams,newNgrams) updates the specified
documents by replacing the n-grams in oldNgrams documents with the corresponding n-grams in
newNgrams.

Examples

Replace N-grams In Documents

Use the replaceNgrams function to replace abbreviations with their corresponding expanded forms.

Create an array of tokenized documents.

str = [ ...
    "Currently in Cambridge, MA."
    "Next stop, NY!"];
documents = tokenizedDocument(str)

documents = 
  2×1 tokenizedDocument:

    6 tokens: Currently in Cambridge , MA .
    5 tokens: Next stop , NY !

Replace the tokens "MA" and "NY" with "Massachusetts" and ["New" "York"] respectively. If
the n-grams have different lengths, you must pad the rows with the empty string "". In this case, you
must pad "Massachusetts" with a single empty string "".

oldNgrams = [
    "MA"
    "NY"];
newNgrams = [
    "Massachusetts" ""
    "New" "York"];
documents = replaceNgrams(documents,oldNgrams,newNgrams)

documents = 
  2×1 tokenizedDocument:

    6 tokens: Currently in Cambridge , Massachusetts .
    6 tokens: Next stop , New York !
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Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

oldNgrams — N-grams to replace
string array | character vector | cell array of character vectors

N-grams to replace, specified as a string array, character vector, or a cell array of character vectors.

If oldNgrams is a string array or cell array, then it has size NumNgrams-by-maxN , where NumNgrams
is the number of n-grams, and maxN is the length of the largest n-gram. If oldNgrams is a character
vector, then it represents a single word (unigram).

The value of oldNgrams(i,j) is the jth word of the ith n-gram. If the number of words in the ith
n-gram is less than maxN, then the remaining entries of the ith row of oldNgrams must be padded
with the empty string "".

For example, to specify both the unigram "Massachusetts", and the bigram ["New" "York"],
specify the 2-by-2 string array ["Massachusetts" ""; "New" "York"], where
"Massachusetts" is padded with a single empty string "".
Data Types: string | char | cell

newNgrams — New n-grams
string array | character vector | cell array of character vectors

New n-grams, specified as a string array, character vector, or a cell array of character vectors.

If newNgrams is a string array or cell array, then it has size NumNgrams-by-maxN , where NumNgrams
is the number of n-grams, and maxN is the length of the largest n-gram. If newNgrams is a character
vector, then it represents a single word (unigram).

The value of newNgrams(i,j) is the jth word of the ith n-gram. If the number of words in the ith
n-gram is less than maxN, then the remaining entries of the ith row of newNgrams are empty.

newNgrams must have one row, or the same number of rows as oldNgrams.

For example, to specify both the unigram "Massachusetts", and the bigram ["New" "York"],
specify the 2-by-2 string array ["Massachusetts" ""; "New" "York"], where
"Massachusetts" is padded with a single empty string "".
Data Types: string | char | cell

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.
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See Also
decodeHTMLEntities | normalizeWords | removeWords | replaceWords |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2019a
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resume
Resume fitting LDA model

Syntax
updatedMdl = resume(ldaMdl,bag)
updatedMdl = resume(ldaMdl,counts)
updatedMdl = resume( ___ ,Name,Value)

Description
updatedMdl = resume(ldaMdl,bag) returns an updated LDA model by training for more
iterations on the bag-of-words or bag-of-n-grams model bag. The input bag must be the same model
used to fit ldaMdl.

updatedMdl = resume(ldaMdl,counts) returns an updated LDA model by training for more
iterations on the documents represented by the matrix of word counts counts. The input counts
must be the same matrix used to fit ldaMdl.

updatedMdl = resume( ___ ,Name,Value) specifies additional options using one or more name-
value pair arguments.

Examples

Resume Fitting of LDA Model

To reproduce the results in this example, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
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    NumDocuments: 154

Fit an LDA model with four topics. The resume function does not support the default solver for
fitlda. Set the LDA solver to be collapsed variational Bayes, zeroth order.

numTopics = 4;
mdl = fitlda(bag,numTopics,'Solver','cvb0')

=====================================================================================
| Iteration  |  Time per  |  Relative  |  Training  |     Topic     |     Topic     |
|            | iteration  | change in  | perplexity | concentration | concentration |
|            | (seconds)  |   log(L)   |            |               |   iterations  |
=====================================================================================
|          0 |       0.01 |            |  3.292e+03 |         1.000 |             0 |
|          1 |       0.01 | 1.4970e-01 |  1.147e+03 |         1.000 |             0 |
|          2 |       0.01 | 7.1229e-03 |  1.091e+03 |         1.000 |             0 |
|          3 |       0.01 | 8.1261e-03 |  1.031e+03 |         1.000 |             0 |
|          4 |       0.01 | 8.8626e-03 |  9.703e+02 |         1.000 |             0 |
|          5 |       0.01 | 8.5486e-03 |  9.154e+02 |         1.000 |             0 |
|          6 |       0.01 | 7.4632e-03 |  8.703e+02 |         1.000 |             0 |
|          7 |       0.01 | 6.0480e-03 |  8.356e+02 |         1.000 |             0 |
|          8 |       0.01 | 4.5955e-03 |  8.102e+02 |         1.000 |             0 |
|          9 |       0.01 | 3.4068e-03 |  7.920e+02 |         1.000 |             0 |
|         10 |       0.01 | 2.5353e-03 |  7.788e+02 |         1.000 |             0 |
|         11 |       0.01 | 1.9089e-03 |  7.690e+02 |         1.222 |            10 |
|         12 |       0.01 | 1.2486e-03 |  7.626e+02 |         1.176 |             7 |
|         13 |       0.01 | 1.1243e-03 |  7.570e+02 |         1.125 |             7 |
|         14 |       0.01 | 9.1253e-04 |  7.524e+02 |         1.079 |             7 |
|         15 |       0.01 | 7.5878e-04 |  7.486e+02 |         1.039 |             6 |
|         16 |       0.01 | 6.6181e-04 |  7.454e+02 |         1.004 |             6 |
|         17 |       0.01 | 6.0400e-04 |  7.424e+02 |         0.974 |             6 |
|         18 |       0.01 | 5.6244e-04 |  7.396e+02 |         0.948 |             6 |
|         19 |       0.01 | 5.0548e-04 |  7.372e+02 |         0.926 |             5 |
|         20 |       0.01 | 4.2796e-04 |  7.351e+02 |         0.905 |             5 |
=====================================================================================
| Iteration  |  Time per  |  Relative  |  Training  |     Topic     |     Topic     |
|            | iteration  | change in  | perplexity | concentration | concentration |
|            | (seconds)  |   log(L)   |            |               |   iterations  |
=====================================================================================
|         21 |       0.01 | 3.4941e-04 |  7.334e+02 |         0.887 |             5 |
|         22 |       0.01 | 2.9495e-04 |  7.320e+02 |         0.871 |             5 |
|         23 |       0.01 | 2.6300e-04 |  7.307e+02 |         0.857 |             5 |
|         24 |       0.01 | 2.5200e-04 |  7.295e+02 |         0.844 |             4 |
|         25 |       0.01 | 2.4150e-04 |  7.283e+02 |         0.833 |             4 |
|         26 |       0.01 | 2.0549e-04 |  7.273e+02 |         0.823 |             4 |
|         27 |       0.01 | 1.6441e-04 |  7.266e+02 |         0.813 |             4 |
|         28 |       0.01 | 1.3256e-04 |  7.259e+02 |         0.805 |             4 |
|         29 |       0.01 | 1.1094e-04 |  7.254e+02 |         0.798 |             4 |
|         30 |       0.01 | 9.2849e-05 |  7.249e+02 |         0.791 |             4 |
=====================================================================================

mdl = 
  ldaModel with properties:

                     NumTopics: 4
             WordConcentration: 1
            TopicConcentration: 0.7908
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      CorpusTopicProbabilities: [0.2654 0.2531 0.2480 0.2336]
    DocumentTopicProbabilities: [154x4 double]
        TopicWordProbabilities: [3092x4 double]
                    Vocabulary: [1x3092 string]
                    TopicOrder: 'initial-fit-probability'
                       FitInfo: [1x1 struct]

View information about the fit.

mdl.FitInfo

ans = struct with fields:
          TerminationCode: 1
        TerminationStatus: "Relative tolerance on log-likelihood satisfied."
            NumIterations: 30
    NegativeLogLikelihood: 6.3042e+04
               Perplexity: 724.9445
                   Solver: "cvb0"
                  History: [1x1 struct]

Resume fitting the LDA model with a lower log-likelihood tolerance.

tolerance = 1e-5;
updatedMdl = resume(mdl,bag, ...
    'LogLikelihoodTolerance',tolerance)

=====================================================================================
| Iteration  |  Time per  |  Relative  |  Training  |     Topic     |     Topic     |
|            | iteration  | change in  | perplexity | concentration | concentration |
|            | (seconds)  |   log(L)   |            |               |   iterations  |
=====================================================================================
|         30 |       0.00 |            |  7.249e+02 |         0.791 |             0 |
|         31 |       0.01 | 8.0569e-05 |  7.246e+02 |         0.785 |             3 |
|         32 |       0.01 | 7.4692e-05 |  7.242e+02 |         0.779 |             3 |
|         33 |       0.01 | 6.9802e-05 |  7.239e+02 |         0.774 |             3 |
|         34 |       0.01 | 6.1154e-05 |  7.236e+02 |         0.770 |             3 |
|         35 |       0.05 | 5.3163e-05 |  7.233e+02 |         0.766 |             3 |
|         36 |       0.03 | 4.7807e-05 |  7.231e+02 |         0.762 |             3 |
|         37 |       0.01 | 4.1820e-05 |  7.229e+02 |         0.759 |             3 |
|         38 |       0.01 | 3.6237e-05 |  7.227e+02 |         0.756 |             3 |
|         39 |       0.01 | 3.1819e-05 |  7.226e+02 |         0.754 |             2 |
|         40 |       0.01 | 2.7772e-05 |  7.224e+02 |         0.751 |             2 |
|         41 |       0.01 | 2.5238e-05 |  7.223e+02 |         0.749 |             2 |
|         42 |       0.01 | 2.2052e-05 |  7.222e+02 |         0.747 |             2 |
|         43 |       0.01 | 1.8471e-05 |  7.221e+02 |         0.745 |             2 |
|         44 |       0.01 | 1.5638e-05 |  7.221e+02 |         0.744 |             2 |
|         45 |       0.01 | 1.3735e-05 |  7.220e+02 |         0.742 |             2 |
|         46 |       0.01 | 1.2298e-05 |  7.219e+02 |         0.741 |             2 |
|         47 |       0.01 | 1.0905e-05 |  7.219e+02 |         0.739 |             2 |
|         48 |       0.01 | 9.5581e-06 |  7.218e+02 |         0.738 |             2 |
=====================================================================================

updatedMdl = 
  ldaModel with properties:

                     NumTopics: 4
             WordConcentration: 1
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            TopicConcentration: 0.7383
      CorpusTopicProbabilities: [0.2679 0.2517 0.2495 0.2309]
    DocumentTopicProbabilities: [154x4 double]
        TopicWordProbabilities: [3092x4 double]
                    Vocabulary: [1x3092 string]
                    TopicOrder: 'initial-fit-probability'
                       FitInfo: [1x1 struct]

View information about the fit.

updatedMdl.FitInfo

ans = struct with fields:
          TerminationCode: 1
        TerminationStatus: "Relative tolerance on log-likelihood satisfied."
            NumIterations: 48
    NegativeLogLikelihood: 6.3001e+04
               Perplexity: 721.8357
                   Solver: "cvb0"
                  History: [1x1 struct]

Input Arguments
ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an ldaModel object. To resume fitting a model, you must fit ldaMdl
with solver 'savb', 'avb', or 'cvb0'.

bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a bagOfNgrams
object. If bag is a bagOfNgrams object, then the function treats each n-gram as a single word.

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts(i,j) corresponds to the number of times the
jth word of the vocabulary appears in the ith document. Otherwise, the value counts(i,j)
corresponds to the number of times the ith word of the vocabulary appears in the jth document.

Note The arguments bag and counts must be the same used to fit ldaMdl.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'LogLikelihoodTolerance',0.001 specifies a log-likelihood tolerance of 0.001.
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Solver Options

DocumentsIn — Orientation of documents
'rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated pair consisting
of 'DocumentsIn' and one of the following:

• 'rows' – Input is a matrix of word counts with rows corresponding to documents.
• 'columns' – Input is a transposed matrix of word counts with columns corresponding to

documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and specify
'DocumentsIn','columns', then you might experience a significant reduction in optimization-
execution time.

FitTopicConcentration — Option for fitting topic concentration parameter
true | false

Option for fitting topic concentration, specified as the comma-separated pair consisting of
'FitTopicConcentration' and either true or false.

The default value is the value used to fit ldaMdl.
Example: 'FitTopicConcentration',true
Data Types: logical

FitTopicProbabilities — Option for fitting topic probabilities
true | false

Option for fitting topic concentration, specified as the comma-separated pair consisting of
'FitTopicConcentration' and either true or false.

The default value is the value used to fit ldaMdl.

The function fits the Dirichlet prior α = α0 p1 p2 ⋯ pK  on the topic mixtures, where α0 is the topic
concentration and p1, …, pK are the corpus topic probabilities which sum to 1.

Example: 'FitTopicProbabilities',true
Data Types: logical

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
'LogLikelihoodTolerance' and a positive scalar. The optimization terminates when this
tolerance is reached.
Example: 'LogLikelihoodTolerance',0.001
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Batch Solver Options

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.

This option supports models fitted with batch solvers only ('cgs', 'avb', and 'cvb0').
Example: 'IterationLimit',200

Stochastic Solver Options

DataPassLimit — Maximum number of passes through data
1 (default) | positive integer

Maximum number of passes through the data, specified as the comma-separated pair consisting of
'DataPassLimit' and a positive integer.

If you specify 'DataPassLimit' but not 'MiniBatchLimit', then the default value of
'MiniBatchLimit' is ignored. If you specify both 'DataPassLimit' and 'MiniBatchLimit',
then resume uses the argument that results in processing the fewest observations.

This option supports models fitted with stochastic solvers only ('savb').
Example: 'DataPassLimit',2

MiniBatchLimit — Maximum number of mini-batch passes
positive integer

Maximum number of mini-batch passes, specified as the comma-separated pair consisting of
'MiniBatchLimit' and a positive integer.

If you specify 'MiniBatchLimit' but not 'DataPassLimit', then resume ignores the default
value of 'DataPassLimit'. If you specify both 'MiniBatchLimit' and 'DataPassLimit', then
resume uses the argument that results in processing the fewest observations. The default value is
ceil(numDocuments/MiniBatchSize), where numDocuments is the number of input documents.

This option supports models fitted with stochastic solvers only ('savb').
Example: 'MiniBatchLimit',200

MiniBatchSize — Mini-batch size
1000 (default) | positive integer

Mini-batch size, specified as the comma-separated pair consisting of 'MiniBatchLimit' and a
positive integer. The function processes MiniBatchSize documents in each iteration.

This option supports models fitted with stochastic solvers only ('savb').
Example: 'MiniBatchSize',512

Display Options

ValidationData — Validation data
[] (default) | bagOfWords object | bagOfNgrams object | sparse matrix of word counts
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Validation data to monitor optimization convergence, specified as the comma-separated pair
consisting of 'ValidationData' and a bagOfWords object, a bagOfNgrams object, or a sparse
matrix of word counts. If the validation data is a matrix, then the data must have the same orientation
and the same number of words as the input documents.

ValidationFrequency — Frequency of model validation
positive integer

Frequency of model validation in number of iterations, specified as the comma-separated pair
consisting of 'ValidationFrequency' and a positive integer.

The default value depends on the solver used to fit the model. For the stochastic solver, the default
value is 10. For the other solvers, the default value is 1.

Verbose — Verbosity level
1 (default) | 0

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and one of the
following:

• 0 – Do not display verbose output.
• 1 – Display progress information.

Example: 'Verbose',0

Output Arguments
updatedMdl — Updated LDA model
ldaModel object (default)

Updated LDA model, returned as an ldaModel object.

See Also
bagOfNgrams | bagOfWords | fitlda | ldaModel | logp | predict | transform | wordcloud

Topics
“Analyze Text Data Using Topic Models”
“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”
“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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rougeEvaluationScore
Evaluate translation or summarization with ROUGE similarity score

Syntax
score = rougeEvaluationScore(candidate,references)
score = rougeEvaluationScore(candidate,references,Name,Value)

Description
The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) scoring algorithm evaluates the
similarity between a candidate document and a collection of reference documents. Use the ROUGE
score to evaluate the quality of document translation and summarization models.

score = rougeEvaluationScore(candidate,references) returns the ROUGE score between
the specified candidate document and the reference documents. The function, by default, computes
unigram overlaps between candidate and references. This is also known as the ROUGE-N metric
with n-gram length 1. For more information, see “ROUGE Score” on page 1-316.

score = rougeEvaluationScore(candidate,references,Name,Value) specifies additional
options using one or more name-value pairs.

Examples

Evaluate Similarity

Specify the candidate document as a tokenizedDocument object.

str = "the fast brown fox jumped over the lazy dog";
candidate = tokenizedDocument(str)

candidate = 
  tokenizedDocument:

   9 tokens: the fast brown fox jumped over the lazy dog

Specify the reference documents as a tokenizedDocument array.

str = [
    "the quick brown animal jumped over the lazy dog"
    "the quick brown fox jumped over the lazy dog"];
references = tokenizedDocument(str)

references = 
  2x1 tokenizedDocument:

    9 tokens: the quick brown animal jumped over the lazy dog
    9 tokens: the quick brown fox jumped over the lazy dog
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Calculate the ROUGE score between the candidate document and the reference documents.

score = rougeEvaluationScore(candidate,references)

score = 0.8889

Specify N-Gram Lengths

Specify the candidate document as a tokenizedDocument object.

str = "a simple summary document containing some words";
candidate = tokenizedDocument(str)

candidate = 
  tokenizedDocument:

   7 tokens: a simple summary document containing some words

Specify the reference documents as a tokenizedDocument array.

str = [
    "a simple document"
    "another document with some words"];
references = tokenizedDocument(str)

references = 
  2x1 tokenizedDocument:

    3 tokens: a simple document
    5 tokens: another document with some words

Calculate the ROUGE score between the candidate document and the reference documents using the
default options.

score = rougeEvaluationScore(candidate,references)

score = 1

The rougeEvaluationScore function, by default, compares unigram (single-token) overlaps
between the candidate document and the reference documents. Because the ROUGE score is a recall-
based measure, if one of the reference documents is made up entirely of unigrams that appear in the
candidate document, the resulting ROUGE score is one. In this scenario, the output of the
rougeEvaluationScore function is uninformative.

For a more meaningful result, calcualte the ROUGE score again using bigrams by setting the
'NgramLength' option to 2. The resulting score is less than one, since every reference document
contain bigrams that do not appear in the candidate document.

score = rougeEvaluationScore(candidate,references,'NgramLength',2)

score = 0.5000
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Input Arguments
candidate — Candidate document
tokenizedDocument scalar | string array | cell array of character vectors

Candidate document, specified as a tokenizedDocument scalar, a string array, or a cell array of
character vectors. If candidate is not a tokenizedDocument scalar, then it must be a row vector
representing a single document, where each element is a word.

references — Reference documents
tokenizedDocument array | string array | cell array of character vectors

Reference documents, specified as a tokenizedDocument array, a string array, or a cell array of
character vectors. If references is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To evaluate against multiple
reference documents, use a tokenizedDocument array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: scores =
rougeEvaluationScore(candidate,references,'ROUGEMethod','weighted-
subsequences') specifies to use the weighted subsequences ROUGE method.

ROUGEMethod — ROUGE method
'n-grams' (default) | 'longest-common-subsequences' | 'weighted-subsequences' |
'skip-bigrams' | 'skip-bigrams-and-unigrams'

ROUGE method, specified as the comma-separated pair consisting of 'ROUGEMethod' and one of the
following:

• 'n-grams' – Evaluate the ROUGE score using n-gram overlaps between the candidate document
and the reference documents. This is also known as the ROUGE-N metric.

• 'longest-common-subsequences' – Evaluate the ROUGE score using Longest Common
Subsequence (LCS) statistics. This is also known as the ROUGE-L metric.

• 'weighted-subsequences' – Evaluate the ROUGE score using weighted longest common
subsequence statistics. This method favors consecutive LCSs. This is also known as the ROUGE-W
metric.

• 'skip-bigrams' – Evaluate the ROUGE score using skip-bigram (any pair of words in sentence
order) co-occurrence statistics. This is also known as the ROUGE-S metric.

• 'skip-bigrams-and-unigrams' – Evaluate the ROUGE score using skip-bigram and unigram
co-occurrence statistics. This is also known as the ROUGE-SU metric.

NgramLength — N-gram length
1 (default) | positive integer

N-gram length used for the 'n-grams' ROUGE method (ROUGE-N), specified as the comma-
separated pair consisting of 'NgramLength' and a positive integer.

If the 'ROUGEMethod' option is not 'n-grams', then the 'NgramLength' option has no effect.
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Tip If the longest document in references has fewer than NgramLength words, then the resulting
ROUGE score is NaN. If candidate has fewer than NgramLength words, then the resulting ROUGE
score is zero. To ensure that rougeEvaluationScore returns nonzero scores for very short
documents, set NgramLength to a positive integer smaller than the length of candidate and the
length of the longest document in references.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SkipDistance — Skip distance
4 (default) | positive integer

Skip distance used for the 'skip-bigrams' and 'skip-bigrams-and-unigrams' ROUGE
methods (ROUGE-S and ROUGE-SU), specified as the comma-separated pair consisting of
'SkipDistance' and a positive integer.

If the 'ROUGEMethod' option is not 'skip-bigrams' or 'skip-bigrams-and-unigrams', then
the 'SkipDistance' option has no effect.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
score — ROUGE score
scalar

ROUGE score, returned as a scalar value in the range [0,1] or NaN.

A ROUGE score close to zero indicates poor similarity between candidate and references. A
ROUGE score close to one indicates strong similarity between candidate and references. If
candidate is identical to one of the reference documents, then score is 1. If candidate and
references are both empty documents, then the resulting ROUGE score is NaN.

Tip If the longest document in references has fewer than NgramLength words, then the resulting
ROUGE score is NaN. If candidate has fewer than NgramLength words, then the resulting ROUGE
score is zero. To ensure that rougeEvaluationScore returns nonzero scores for very short
documents, set NgramLength to a positive integer smaller than the length of candidate and the
length of the longest document in references.

Algorithms
ROUGE Score

The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) scoring algorithm [1] calculates the
similarity between a candidate document and a collection of reference documents. Use the ROUGE
score to evaluate the quality of document translation and summarization models.

N-gram Co-Occurrence Statistics (ROUGE-N)

Given an n-gram length n, the ROUGE-N metric between a candidate document and a single
reference document is given by
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ROUGE‐Nsingle(candidate, reference) =
∑

ri ∈  reference
∑

n‐gram ∈ ri
Count(n‐gram, candidate)

∑
ri ∈  reference

numNgrams(ri)
,

where the elements ri are sentences in the reference document, Count(n‐gram,  candidate) is the
number of times the specified n-gram occurs in the candidate document and numNgrams(ri) is the
number of n-grams in the specified reference sentence ri.

For sets of multiple reference documents, the ROUGE-N metric is given by

ROUGE‐N(candidate, references) = maxk ROUGE‐Nsingle(candidate, referencesk) .

To use the ROUGE-N metric, set the 'ROUGEMethod' option to 'n-grams'.

Longest Common Subsequence (ROUGE-L)

Given a sentence d = [w1, …, wm] and a sentence s, where the elements si correspond to words, the
subsequence [wi1, …, wik] is a common subsequence of d and s if wi j′ ∈ s1, …, sn  for j = 1, …, k and
i1 < ⋯ < ik, where the elements of s are the words of the sentence and k is the length of the
subsequence. The subsequence [wi1, …, wik] is a longest common subsequence (LCS) if the
subsequence length k is maximal.

Given a candidate document and a single reference document the union of the longest common
subsequences is given by

LCS∪(candidate, reference) = ∪
ri ∈  reference

w w ∈ LCS(candidate, ri) ,

where LCS(candidate, ri) is the set of longest common subsequences in the candidate document and
the sentence ri from a reference document.

The ROUGE-L metric is an F-score measure. To calculate it, first calculate the recall and precision
scores given by

Rlcs(candidate,  reference) =
∑

ri ∈  reference
LCS∪(candidate,ri)

numWords(reference)

Plcs(candidate,  reference) =
∑

ri ∈  reference
LCS∪(candidate,ri)

numWords(candidate) .

Then, the ROUGE-L metric between a candidate document and a single reference document is given
by the F-score measure

ROUGE‐Lsingle(candidate,  reference)

=
(1 + β2)Rlcs(candidate,  reference)Plcs(candidate,  reference)

Rlcs(candidate,  reference) + β2Plcs(candidate,  reference)
,

where the parameter β controls the relative importance of the precision and recall. Because the
ROUGE score favors recall, β is typically set to a high value.
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For sets of multiple reference documents, the ROUGE-L metric is given by

ROUGE‐L(candidate, references) = maxk ROUGE‐Lsingle(candidate, referencesk) .

To use the ROUGE-L metric, set the 'ROUGEMethod' option to 'longest-common-
subsequences'.
Weighted Longest Common Subsequence (ROUGE-W)

Given a weighting function f such that f has the property f(x+y)>f(x)+f(y) for any positive integers x
and y, define WLCS(candidate,  reference) to be the length of the longest consecutive matches
encountered in the candidate document and a single reference document scored by the weighting
function f. For more information about calculating this value, see [1].

The ROUGE-W is metric given an F-score measure which requires the recall and precision scores
given by

Rwlcs(candidate,  reference) = f−1 WLCS(candidate,  reference)
f (numWords(reference)

Pwlcs(candidate,  reference) = f−1 WLCS(candidate,  reference)
f (numWords(candidate)) .

The ROUGE-W metric between a candidate document and a single reference document is given by
the F-score measure

ROUGE‐Wsingle(candidate,  reference)

=
(1 + β2)Rwlcs(candidate,  reference)Pwlcs(candidate,  reference)

Rwlcs(candidate,  reference) + β2Pwlcs(candidate,  reference)
,

where the parameter β controls the relative importance of the precision and recall. Because the
ROUGE score favors recall, β is typically set to a high value.

For multiple reference documents, the ROUGE-W metric is given by

ROUGE‐W(candidate, references) = maxk ROUGE‐Wsingle(candidate, referencesk) .

To use the ROUGE-W metric, set the 'ROUGEMethod' option to 'weighted-longest-common-
subsequences'.
Skip-Bigram Co-Occurrence Statistics (ROUGE-S)

A skip-bigram is an ordered pair of words in a sentence allowing for arbitrary gaps between them.
That is, given a sentence ci = [ci1, …, cim] from a candidate document, where the elements cij
correspond to the words in the sentence, the pair of words [ci j1′ , ci j2′ ] is a skip-bigram if j1′ < j2′ .

The ROUGE-S metric is an F-score measure. To calculate it, first calculate the recall and precision
scores given by

Rskip2(candidate,  reference) =
∑

ri ∈  reference
∑

skip‐bigram ∈ ri
Count(skip‐bigram, candidate)

∑
ri ∈  reference

numSkipBigrams(ri)
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Pskip2(candidate,  reference) =
∑

ri ∈ reference
∑

skip‐bigram ∈ ri
Count(skip‐bigram,  candidate)

∑
ci ∈  candidate

numSkipBigrams(ci)
.

where the elements ri and ci are sentences in the reference document and candidate document,
respectively, Count(skip‐bigram,  candidate) is the number of times the specified skip-bigram occurs
in the candidate document, and numSkipBigrams(s) is the number of skip-bigrams in the sentence s.

Then, the ROUGE-S metric between a candidate document and a single reference document is given
by the F-score measure

ROUGE‐Ssingle(candidate,  reference)

=
(1 + β2)Rskip2(candidate,  reference)Pskip2(candidate,  reference)

Rskip2(candidate,  reference) + β2Pskip2(candidate,  reference)
,

For sets of multiple reference documents, the ROUGE-S metric is given by

ROUGE‐S(candidate, references) = maxk ROUGE‐Ssingle(candidate, referencesk) .

To use the ROUGE-S metric, set the 'ROUGEMethod' option to 'skip-bigrams'.

Skip-Bigram and Unigram Co-Occurrence Statistics (ROUGE-SU)

To also include unigram co-occurrence statistics in the ROUGE-S metric, introduce unigram counts
into the recall and precision scores for ROUGE-S. This is equivalent to including start tokens in the
candidate and reference documents, since

∑
skip‐bigram ∈ ri

Count(skip‐bigram,  candidate) + ∑
unigram ∈ ri

Count(unigram,  candidate

= ∑
skip‐bigram ∈ ri

+
Count(skip‐bigram,  candidate+) ,

where Count(unigram,candidate) is the number of times the specified unigram appears in the
candidate document, and ri

+ and candidate+ denote the reference sentence and the candidate
document augmented with start tokens, respectively.

For sets of multiple reference documents, the ROUGE-SU metric is given by

ROUGE‐SU(candidate, references) = maxk ROUGE‐Ssingle(candidate+, referencesk
+) ,

where reference+ is the reference document with sentences augmented with start tokens.

To use the ROUGE-SU metric, set the 'ROUGEMethod' option to 'skip-bigrams-and-unigrams'.

References
[1] Lin, Chin-Yew. "Rouge: A package for automatic evaluation of summaries." In Text Summarization

Branches Out, pp. 74-81. 2004.
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See Also
bleuEvaluationScore | bm25Similarity | cosineSimilarity | extractSummary |
lexrankScores | mmrScores | textrankScores | tokenizedDocument

Topics
“Sequence-to-Sequence Translation Using Attention”

Introduced in R2020a
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splitGraphemes
Split string into graphemes

Syntax
newStr = splitGraphemes(str)

Description
newStr = splitGraphemes(str) splits the string str into graphemes. A grapheme (also known
as grapheme cluster) is the Unicode term for human-perceived characters.

Examples

Split Text into Graphemes

Split text into graphemes using the splitGraphemes function.

A grapheme (also known as grapheme clusters) is the Unicode term for human-perceived characters.
Some graphemes contain multiple code units. For example, the "smiling face with sunglasses" emoji
(�� with code point U+1F60E) is a single grapheme but comprises two UTF16 code units "D83D" and
"DE0E".

Split the text "Smile! ��" into graphemes.

str = "Smile! " + compose("\xD83D\xDE0E")

str = 
"Smile! ��"

newStr = splitGraphemes(str)

newStr = 8x1 string
    "S"
    "m"
    "i"
    "l"
    "e"
    "!"
    " "
    "��"

Here, the function does not split the emoji into multiple characters.

Input Arguments
str — Input text
string array | character vector | cell array of character vectors
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Input text, specified as a string array, character vector, or cell array of character vectors. For string
array and cell array input, each element of str must have the same number of graphemes.

If the number of graphemes is not the same for every element of str, then call the function in a for-
loop to split the elements of str one at a time.
Data Types: string | char | cell

Output Arguments
newStr — Split graphemes
string array | cell array of character vectors

Split graphemes, returned as a string array or a cell array of character vectors. If str is a string
array, then newStr is also a string array. Otherwise, newStr is a cell array of character vectors.

The size of newStr depends on the input:

• If str is a string scalar or a character vector, then newStr is an numGraphemes-by-1 string array
or cell array, where numGraphemes is the number of graphemes.

• If str is an M-by-1 string array or cell array, then newStr is a M-by-numGraphemes array.
• If str is a 1-by-N string array or cell array, then newStr is a 1-by-N-by-numGraphemes array.

For a string array or cell array of any size, the function orients the split graphemes along the first
trailing dimension with size 1.

See Also
editDistance | editDistanceSearcher | knnsearch | rangesearch | split |
tokenizedDocument

Topics
“Create Custom Spelling Correction Function Using Edit Distance Searchers”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”

Introduced in R2019a
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splitSentences
Split text into sentences

Syntax
newStr = splitSentences(str)

Description
newStr = splitSentences(str) splits str into an array of sentences.

Examples

Split Text into Sentences

Read the text from the example file sonnets.txt and split it into sentences.

filename = "sonnets.txt";
str = extractFileText(filename);
sentences = splitSentences(str);

View the first few sentences.

sentences(1:10)

ans = 10x1 string
    "THE SONNETS"
    "by William Shakespeare"
    "I"
    "From fairest creatures we desire increase,..."
    "II"
    "When forty winters shall besiege thy brow,..."
    "How much more praise deserv'd thy beauty's use,..."
    "This were to be new made when thou art old,..."
    "III"
    "Look in thy glass and tell the face thou viewest..."

Input Arguments
str — Input text
string scalar | character vector | scalar cell array containing a character vector

Input text, specified as a string scalar, a character vector, or a scalar cell array containing a character
vector.
Data Types: string | char | cell
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Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character vectors. str and
newStr have the same data type.

Algorithms
If emoticons or emoji characters appear after a terminating punctuation character, then the function
splits the sentence after the emoticons and emoji.

See Also
addSentenceDetails | corpusLanguage | decodeHTMLEntities | erasePunctuation |
eraseTags | eraseURLs | lower | tokenizedDocument | upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Language Considerations”

Introduced in R2018a
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stopWords
List of stop words

Syntax
words = stopWords
words = stopWords('Language',language)

Description
Words like "a", "and", "to", and "the" (known as stop words) can add noise to data. Use stop word lists
to help create custom lists of words to remove before analysis.

To remove the default list of stop words from tokenized documents using the language details of the
documents, use removeStopWords. To remove a custom list of words from tokenized documents, use
removeWords.

The function returns English, Japanese, German, and Korean stop word lists.

words = stopWords returns a string array of common English words which can be removed from
documents before analysis.

words = stopWords('Language',language) specifies the stop word language.

Examples

Remove Custom List of Stop Words from Documents

To remove the default list of stop words using the language details of documents, use
removeStopWords.

To remove a custom list of stop words, use the removeWords function. You can use the stop word list
returned by the stopWords function as a starting point.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

View the first few documents.

documents(1:5)

ans = 
  5x1 tokenizedDocument:

 stopWords

1-325



    70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
    71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
    65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
    71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
    61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet

Create a list of stop words starting with the output of the stopWords function.

customStopWords = [stopWords "thy" "thee" "thou" "dost" "doth"];

Remove the custom stop words from the documents and view the first few documents.

documents = removeWords(documents,customStopWords);
documents(1:5)

ans = 
  5x1 tokenizedDocument:

    62 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory contracted thine own bright eyes feedst lights flame selfsubstantial fuel making famine abundance lies self foe sweet self cruel art worlds fresh ornament herald gaudy spring thine own bud buriest content tender churl makst waste niggarding pity world else glutton eat worlds due grave
    61 tokens: forty winters shall besiege brow dig deep trenches beautys field youths proud livery gazed tatterd weed small worth held asked beauty lies treasure lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd beautys couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made art old blood warm feelst cold
    52 tokens: look glass tell face viewest time face form another whose fresh repair renewest beguile world unbless mother fair whose uneard womb disdains tillage husbandry fond tomb selflove stop posterity art mothers glass calls back lovely april prime windows thine age shalt despite wrinkles golden time live rememberd die single thine image dies
    52 tokens: unthrifty loveliness why spend upon self beautys legacy natures bequest gives nothing lend frank lends free beauteous niggard why abuse bounteous largess give profitless usurer why great sum sums yet canst live traffic self alone self sweet self deceive nature calls gone acceptable audit canst leave unused beauty tombed lives th executor
    59 tokens: hours gentle work frame lovely gaze every eye dwell play tyrants same unfair fairly excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet

List of English Stop Words

Get a list of English stop words using the stopWords function. For readability, reshape the output.

words = stopWords;
reshape(words,[25 9])

ans = 25x9 string
  Columns 1 through 6

    "a"          "but"         "during"     "hows"       "it's"     "said"     
    "about"      "by"          "each"       "however"    "it’s"     "says"     
    "above"      "can"         "either"     "i"          "its"      "see"      
    "across"     "can't"       "for"        "i'd"        "let's"    "she"      
    "after"      "can’t"       "from"       "i’d"        "let’s"    "she'd"    
    "all"        "cant"        "given"      "i'll"       "lets"     "she’d"    
    "along"      "cannot"      "had"        "i’ll"       "may"      "shed"     
    "also"       "could"       "has"        "i'm"        "me"       "she'll"   
    "am"         "couldn't"    "have"       "i’m"        "more"     "she’ll"   
    "an"         "couldn’t"    "having"     "im"         "most"     "shell"    
    "and"        "couldnt"     "he"         "i've"       "much"     "should"   
    "any"        "did"         "he'd"       "i’ve"       "must"     "since"    
    "are"        "didn't"      "he’d"       "ive"        "my"       "so"       
    "aren't"     "didn’t"      "hed"        "if"         "no"       "some"     
    "aren’t"     "didnt"       "he'll"      "in"         "not"      "such"     
    "arent"      "do"          "he’ll"      "instead"    "now"      "than"     
    "as"         "does"        "her"        "into"       "of"       "that"     
    "at"         "doesn't"     "here"       "is"         "on"       "the"      
    "be"         "doesn’t"     "hers"       "isn't"      "one"      "their"    
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    "because"    "doesnt"      "him"        "isn’t"      "only"     "them"     
    "been"       "doing"       "himself"    "isnt"       "or"       "then"     
    "before"     "done"        "his"        "it"         "other"    "there"    
    "being"      "don't"       "how"        "it'll"      "our"      "therefore"
    "between"    "don’t"       "how's"      "it’ll"      "out"      "these"    
    "both"       "dont"        "how’s"      "itll"       "over"     "they"     

  Columns 7 through 9

    "this"       "we’re"      "who’ve"  
    "those"      "we've"      "whove"   
    "through"    "we’ve"      "will"    
    "to"         "weve"       "with"    
    "too"        "were"       "within"  
    "towards"    "what"       "without" 
    "under"      "what's"     "won't"   
    "until"      "what’s"     "won’t"   
    "us"         "whats"      "would"   
    "use"        "when"       "wouldn't"
    "used"       "when's"     "wouldn’t"
    "uses"       "when’s"     "you"     
    "using"      "whens"      "you'd"   
    "very"       "where"      "you’d"   
    "want"       "whether"    "youd"    
    "was"        "which"      "you'll"  
    "wasn't"     "while"      "you’ll"  
    "wasn’t"     "who"        "youll"   
    "wasnt"      "who'll"     "you're"  
    "we"         "who’ll"     "you’re"  
    "we'd"       "wholl"      "youre"   
    "we’d"       "who's"      "you've"  
    "we'll"      "who’s"      "you’ve"  
    "we’ll"      "whos"       "youve"   
    "we're"      "who've"     "your"    

List of Japanese Stop Words

Get a list of Japanese stop words using the stopWords function. For readability, reshape the output.

words = stopWords('Language','ja');
reshape([words strings(1,8)],[35 11])

ans = 35x11 string
  Columns 1 through 7

    "あそこ"      "さらい"      "なかば"      "下"    "今"    "地"      "列"
    "あたり"      "さん"       "なに"       "字"    "部"    "員"      "事"
    "あちら"      "しかた"      "など"       "年"    "課"    "線"      "士"
    "あっち"      "しよう"      "なん"       "月"    "係"    "点"      "台"
    "あと"       "すか"       "はじめ"      "日"    "外"    "書"      "集"
    "あな"       "ずつ"       "はず"       "時"    "類"    "品"      "様"
    "あなた"      "すね"       "はるか"      "分"    "達"    "力"      "所"
    "あれ"       "すべて"      "ひと"       "秒"    "気"    "法"      "歴"
    "いくつ"      "ぜんぶ"      "ひとつ"      "週"    "室"    "感"      "器"
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    "いつ"       "そう"       "ふく"       "火"    "口"    "作"      "名"
    "いま"       "そこ"       "ぶり"       "水"    "誰"    "元"      "情"
    "いや"       "そちら"      "べつ"       "木"    "用"    "手"      "連"
    "いろいろ"    "そっち"      "へん"       "金"    "界"    "数"      "毎"
    "うち"       "そで"       "ぺん"       "土"    "会"    "彼"      "式"
    "おおまか"    "それ"       "ほう"       "国"    "首"    "彼女"    "簿"
    "おまえ"      "それぞれ"    "ほか"       "都"    "男"    "子"      "回"
    "おれ"       "それなり"    "まさ"       "道"    "女"    "内"      "匹"
    "がい"       "たくさん"    "まし"       "府"    "別"    "楽"      "個"
    "かく"       "たち"       "まとも"      "県"    "話"    "喜"      "席"
    "かたち"      "たび"       "まま"       "市"    "私"    "怒"      "束"
    "かやの"      "ため"       "みたい"      "区"    "屋"    "哀"      "歳"
    "から"       "だめ"       "みつ"       "町"    "店"    "輪"      "目"
    "がら"       "ちゃ"       "みなさん"    "村"    "家"    "頃"      "通"
    "きた"       "ちゃん"      "みんな"      "各"    "場"    "化"      "面"
    "くせ"       "てん"       "もと"       "第"    "等"    "境"      "円"
    "ここ"       "とおり"      "もの"       "方"    "見"    "俺"      "玉"
    "こっち"      "とき"       "もん"       "何"    "際"    "奴"      "枚"
    "こと"       "どこ"       "やつ"       "的"    "観"    "高"      "前"
    "ごと"       "どこか"      "よう"       "度"    "段"    "校"      "後"
    "こちら"      "ところ"      "よそ"       "文"    "略"    "婦"      "左"

  Columns 8 through 11

    "秋"      "本当"     "う"       "どう" 
    "冬"      "確か"     "え"       "な"   
    "一"      "時点"     "お"       "ない" 
    "二"      "全部"     "か"       "なり" 
    "三"      "関係"     "が"       "なる" 
    "四"      "近く"     "こそ"     "に"   
    "五"      "方法"     "この"     "ね"   
    "六"      "我々"     "さ"       "の"   
    "七"      "違い"     "さえ"     "ので" 
    "八"      "多く"     "し"       "のに" 
    "九"      "扱い"     "しか"     "は"   
    "十"      "新た"     "する"     "ばかり"
    "百"      "その後"    "ず"       "へ"   
    "千"      "半ば"     "せる"     "ほど" 
    "万"      "結局"     "そして"    "ます" 
    "億"      "様々"     "その"     "ませ" 
    "兆"      "以前"     "た"       "また" 
    "下記"    "以後"     "たい"     "まで" 
    "上記"    "以降"     "ただ"     "も"   
    "時間"    "未満"     "だ"       "や"   
    "今回"    "以上"     "だけ"     "やら" 
    "前回"    "以下"     "だに"     "よ"   
    "場合"    "幾つ"     "だの"     "より" 
    "一つ"    "毎日"     "ち"       "れる" 
    "年生"    "自体"     "って"     "わ"   
    "自分"    "向こう"    "て"       "を"   
    "ヶ所"    "何人"     "で"       "ん"   
    "ヵ所"    "手段"     "でし"     ""     
    "カ所"    "同じ"     "です"     ""     
    "箇所"    "感じ"     "では"     ""     
      ⋮
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List of German Stop Words

Get a list of German stop words using the stopWords function. For readability, reshape the output.

words = stopWords('Language','de');
reshape([words strings(1,7)],[25 8])

ans = 25x8 string
  Columns 1 through 6

    "ab"         "dann"      "doch"       "hattet"     "jene"        "mein"   
    "aber"       "das"       "du"         "her"        "jenem"       "meine"  
    "alle"       "dass"      "durch"      "hin"        "jenen"       "meinem" 
    "allem"      "daß"       "ein"        "hätte"      "jener"       "meinen" 
    "allen"      "dein"      "eine"       "hättest"    "jenes"       "meiner" 
    "aller"      "deine"     "einem"      "hättet"     "kann"        "meines" 
    "alles"      "deinem"    "einen"      "ich"        "kannst"      "mich"   
    "als"        "deiner"    "einer"      "ihm"        "kein"        "mir"    
    "also"       "deines"    "eines"      "ihn"        "keine"       "mit"    
    "am"         "dem"       "er"         "ihr"        "keinem"      "muss"   
    "an"         "den"       "es"         "ihre"       "keinen"      "musst"  
    "andere"     "denn"      "euch"       "ihrem"      "keiner"      "musste" 
    "anderem"    "der"       "euer"       "ihren"      "keines"      "muß"    
    "anderen"    "derer"     "eure"       "ihrer"      "können"      "müssen" 
    "anderer"    "des"       "eurem"      "ihres"      "könnte"      "müssten"
    "anderes"    "dessen"    "euren"      "im"         "könnten"     "nach"   
    "auch"       "dich"      "eures"      "in"         "könntest"    "nicht"  
    "auf"        "die"       "für"        "ins"        "ließ"        "nichts" 
    "aus"        "dies"      "ganz"       "ist"        "man"         "noch"   
    "bei"        "diese"     "gar"        "ja"         "manche"      "nun"    
    "bin"        "diesem"    "habe"       "jede"       "manchem"     "nur"    
    "bis"        "diesen"    "haben"      "jedem"      "manchen"     "ob"     
    "bist"       "dieser"    "hat"        "jeden"      "mancher"     "oder"   
    "da"         "dieses"    "hatte"      "jeder"      "manches"     "seid"   
    "damit"      "dir"       "hattest"    "jedes"      "mehr"        "sein"   

  Columns 7 through 8

    "seine"      "welcher"
    "seinem"     "welches"
    "seinen"     "wenn"   
    "seiner"     "wer"    
    "seines"     "werde"  
    "sich"       "werden" 
    "sie"        "weshalb"
    "sind"       "wie"    
    "so"         "wieder" 
    "um"         "wieso"  
    "und"        "wir"    
    "uns"        "wirst"  
    "unter"      "wo"     
    "vom"        "während"
    "von"        "zu"     
    "vor"        "zum"    
    "war"        "zur"    
    "waren"      "über"   

 stopWords

1-329



    "warst"      ""       
    "warum"      ""       
    "was"        ""       
    "weil"       ""       
    "welche"     ""       
    "welchem"    ""       
    "welchen"    ""       

Input Arguments
language — Stop word language
'en' (default) | 'ja' | 'de' | 'ko'

Stop word language, specified as one of the following:

• 'en' – English
• 'ja' – Japanese
• 'de' – German
• 'ko' – Korean

For more information about language support in Text Analytics Toolbox, see “Language
Considerations”.

More About
Language Considerations

The stopWords and removeStopWords functions support English, Japanese, German, and Korean
stop words only.

To remove stop words from other languages, use removeWords and specify your own stop words to
remove.

See Also
bagOfNgrams | bagOfWords | normalizeWords | removeLongWords | removeShortWords |
removeStopWords | removeWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Language Considerations”
“Japanese Language Support”
“German Language Support”

Introduced in R2017b
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string
Convert scalar document to string vector

Syntax
words = string(document)

Description
words = string(document) converts a scalar tokenizedDocument to a string array of words.

Examples

Convert Document to String

Convert a scalar tokenized document to a string array of words.

document = tokenizedDocument("an example of a short sentence")

document = 
  tokenizedDocument:

   6 tokens: an example of a short sentence

words = string(document)

words = 1x6 string
    "an"    "example"    "of"    "a"    "short"    "sentence"

Input Arguments
document — Input document
scalar tokenizedDocument

Input document, specified as a scalar tokenizedDocument object.

Output Arguments
words — Output words
string vector

Output words, returned as a string vector.

See Also
context | doc2cell | doclength | joinWords | tokenizedDocument
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Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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textscatter
2-D scatter plot of text

Syntax
ts = textscatter(x,y,str)
ts = textscatter(xy,str)
ts = textscatter(ax, ___ )
ts = textscatter( ___ ,Name,Value)

Description
ts = textscatter(x,y,str) creates a text scatter plot with elements of str at the locations
specified by the vectors x and y, and returns the resulting TextScatter object.

ts = textscatter(xy,str) uses locations specified by the rows of xy. This syntax is equivalent
to textscatter(xy(:,1),xy(:,2),str).

ts = textscatter(ax, ___ ) plots into axes ax. You can use any input arguments from previous
syntaxes.

ts = textscatter( ___ ,Name,Value) specifies additional TextScatter properties using one or
more name-value pair arguments.

Examples

Create Text Scatter Plot

Plot a string array of numbers at random points on a text scatter plot.

x = rand(50,1);
y = rand(50,1);
str = string(1:50);
figure
textscatter(x,y,str);
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Alternatively, you can pass the coordinates x and y as a matrix xy, where x and y are the columns of
xy.

xy = [x y];
figure
textscatter(xy,str)
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Specify Word Colors

Create text scatter plot of a word embedding and specify word colors.

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding

emb = 
  wordEmbedding with properties:

     Dimension: 300
    Vocabulary: [1×1000000 string]

Convert the first 500 words to vectors using word2vec. V is a matrix of word vectors of length 300.

words = emb.Vocabulary(1:500);
V = word2vec(emb,words);
size(V)

ans = 1×2

   500   300
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Embed the word vectors in two-dimensional space using tsne.

XY = tsne(V);

Plot the words at the coordinates specified by XY in a 2-D text scatter plot. Specify the word colors to
be random.

numWords = numel(words);
colorData = rand(numWords,3);
figure
textscatter(XY,words,'ColorData',colorData)
title("Word Embedding t-SNE Plot")

Input Arguments
x — x values
vector

x values, specified as a vector. x, y, and str must be of equal length.
Example: [1 2 3]

y — y values
vector

y values, specified as a vector. x, y, and str must be of equal length.
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Example: [1 2 3]

xy — x and y values
matrix

x and y values, specified as a matrix with two columns. xy(i,1) and xy(i,2) correspond to the x
and y values of the ith element of str, respectively. xy must have the numel(str) rows.

textscatter(xy,str) is equivalent to textscatter(xy(:,1),xy(:,2),str).
Example: [1 2 3]

str — Input text
string vector | cell array of character vectors

Input text, specified as a string array or cell array of character vectors. x, y, and str must be of
equal length.
Example: ["one" "two" "three"]
Data Types: string | cell

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then the function uses the current axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Marker','*' specifies the markers to be asterisks.

The TextScatter object properties listed here are only a subset. For a complete list, see TextScatter
Properties.

TextDensityPercentage — Percentage of text data to show
60 (default) | scalar from 0 through 100

Percentage of text data to show, specified as a scalar from 0 through 100. To show all text, set
TextDensityPercentage to 100. To show no text, set TextDensityPercentage to 0.

If you set TextDensityPercentage to 100, then the software does not plot markers.
Example: 70

MaxTextLength — Maximum length of text labels
40 (default) | positive integer

Maximum length of text labels, specified as a positive integer. The software truncates the text labels
to this length and adds ellipses at the point of truncation.
Example: 10

MarkerColor — Marker colors
'auto' (default) | 'none' | RGB triplet
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Marker colors, specified as one of these values:

• 'auto' — For each marker, use the same color as the corresponding text labels.
• 'none' — Do not show markers.
• RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a three-element

row vector whose elements specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0,1]; for example, [0.5 0.6 0.7].

Example: [1 0 0]

ColorData — Text colors
[] (default) | RGB triplet | matrix of RGB triplets | categorical vector

Text colors, specified as one of these values:

• RGB triplet — Use the same color for all the text in the plot. An RGB triplet is a three-element row
vector whose elements specify the intensities of the red, green, and blue components of the color.
The intensities must be in the range [0,1]; for example, [0.5 0.6 0.7].

• Three-column matrix of RGB triplets — Use a different color for each text label in the plot. Each
row of the matrix defines one color. The number of rows must equal the number of text labels.

• Categorical vector — Use a different color for each category in the vector. Specify ColorData as
a vector the same length as XData. Specify the colors for each category using the Colors
property

Example: [1 0 0; 0 1 0; 0 0 1]

Colors — Category colors
matrix of RGB triplets

Category colors, specified as a matrix of RGB triplets. An RGB triplet is a three-element row vector
whose elements specify the intensities of the red, green, and blue components of the color. The
intensities must be in the range [0,1]; for example, [0.5 0.6 0.7].

By default, Colors is equal to the ColorOrder property of the axes object.
Example: [1 0 0; 0 1 0; 0 0 1]

Output Arguments
ts — TextScatter object
TextScatter object

TextScatter object. Use ts to access and modify properties of the text scatter chart after it has
been created. For more information, see TextScatter Properties.

See Also
fastTextWordEmbedding | textscatter3 | tokenizedDocument | word2vec | wordEmbedding
| wordcloud

Topics
“Visualize Text Data Using Word Clouds”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”
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textscatter3
3-D scatter plot of text

Syntax
ts = textscatter3(x,y,z,str)
ts = textscatter3(xyz,str)
ts = textscatter3(ax, ___ )
ts = textscatter3( ___ ,Name,Value)

Description
ts = textscatter3(x,y,z,str) creates a 3-D text scatter plot with elements of str at the
locations specified by the vectors x, y, and z.

ts = textscatter3(xyz,str) creates a 3-D text scatter plot with elements of str at the
locations specified by the rows of xyz. This syntax is equivalent to
textscatter(xyz(:,1),xyz(:,2),xyz(:,3),str).

ts = textscatter3(ax, ___ ) plots into axes object ax. Use this syntax with any of the input
arguments in previous syntaxes.

ts = textscatter3( ___ ,Name,Value) specifies additional TextScatter properties using one
or more name-value pair arguments.

Examples

Create 3-D Text Scatter Plot

Plot a string array of numbers at random points on a 3-D text scatter plot.

x = rand(50,1);
y = rand(50,1);
z = rand(50,1);
str = string(1:50);
figure
textscatter3(x,y,z,str);
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Alternatively, you can pass the coordinates x, y, and z as a matrix xyz, where x, y, and z are the
columns of xyz.

xyz = [x y z];
figure
textscatter3(xyz,str)
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Specify Word Colors

Create text scatter plot of a word embedding and specify word colors.

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Convert the first 250 words to vectors using word2vec. V is a matrix of word vectors of length 300.

words = emb.Vocabulary(1:250);
V = word2vec(emb,words);
size(V)

ans = 1×2

   250   300

Embed the word vectors in a 3-D space using tsne.

XYZ = tsne(V,'NumDimensions',3);
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Plot the words at the coordinates specified by XYZ in a 3-D text scatter plot. Specify the word colors
to be random.

numWords = numel(words);
colorData = rand(numWords,3);
figure
textscatter3(XYZ,words,'ColorData',colorData)
title("Word Embedding t-SNE Plot")

Input Arguments
x — x values
vector

x values, specified as a vector. x, y, z, and str must be of equal length.
Example: [1 2 3]

y — y values
vector

y values, specified as a vector. x, y, z, and str must be of equal length.
Example: [1 2 3]

z — z values
vector
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z values, specified as a vector. x, y, z, and str must be of equal length.
Example: [1 2 3]

xyz — x, y, and z values
matrix

x, y, and z values, specified as a matrix. The first, second, and third columns of xyz correspond to the
x, y, and z values, respectively.

str — Input text
string vector | cell array of character vectors

Input text, specified as a string array or cell array of character vectors. x, y, z, and str must be of
equal length.
Example: ["one" "two" "three"]
Data Types: string | cell

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then the function uses the current axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Marker','*' specifies the markers to be asterisks.

The TextScatter object properties listed here are only a subset. For a complete list, see TextScatter
Properties.

TextDensityPercentage — Percentage of text data to show
60 (default) | scalar from 0 through 100

Percentage of text data to show, specified as a scalar from 0 through 100. To show all text, set
TextDensityPercentage to 100. To show no text, set TextDensityPercentage to 0.

If you set TextDensityPercentage to 100, then the software does not plot markers.
Example: 70

MaxTextLength — Maximum length of text labels
40 (default) | positive integer

Maximum length of text labels, specified as a positive integer. The software truncates the text labels
to this length and adds ellipses at the point of truncation.
Example: 10

MarkerColor — Marker colors
'auto' (default) | 'none' | RGB triplet

Marker colors, specified as one of these values:
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• 'auto' — For each marker, use the same color as the corresponding text labels.
• 'none' — Do not show markers.
• RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a three-element

row vector whose elements specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0,1]; for example, [0.5 0.6 0.7].

Example: [1 0 0]

ColorData — Text colors
[] (default) | RGB triplet | matrix of RGB triplets | categorical vector

Text colors, specified as one of these values:

• RGB triplet — Use the same color for all the text in the plot. An RGB triplet is a three-element row
vector whose elements specify the intensities of the red, green, and blue components of the color.
The intensities must be in the range [0,1]; for example, [0.5 0.6 0.7].

• Three-column matrix of RGB triplets — Use a different color for each text label in the plot. Each
row of the matrix defines one color. The number of rows must equal the number of text labels.

• Categorical vector — Use a different color for each category in the vector. Specify ColorData as
a vector the same length as XData. Specify the colors for each category using the Colors
property

Example: [1 0 0; 0 1 0; 0 0 1]

Colors — Category colors
matrix of RGB triplets

Category colors, specified as a matrix of RGB triplets. An RGB triplet is a three-element row vector
whose elements specify the intensities of the red, green, and blue components of the color. The
intensities must be in the range [0,1]; for example, [0.5 0.6 0.7].

By default, Colors is equal to the ColorOrder property of the axes object.
Example: [1 0 0; 0 1 0; 0 0 1]

Output Arguments
ts — TextScatter object
TextScatter object

TextScatter object. Use ts to access and modify properties of the text scatter chart after it has
been created. For more information, see TextScatter Properties.

See Also
fastTextWordEmbedding | textscatter | tokenizedDocument | word2vec | wordEmbedding |
wordcloud

Topics
“Visualize Text Data Using Word Clouds”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”
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Introduced in R2017b
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TextScatter Properties
Control text scatter chart appearance and behavior

Description
TextScatter properties control the appearance and behavior of TextScatter object. By changing
property values, you can modify certain aspects of the text scatter chart.

Properties
Text

TextData — Text labels
string array | cell array of character vectors

Text labels, specified as a string array, or a cell array of character vectors.
Example: ["word1" "word2" "word3"]
Data Types: string | cell

TextDensityPercentage — Percentage of text data to show
60 (default) | scalar from 0 through 100

Percentage of text data to show, specified as a scalar from 0 through 100. To show all text, set
TextDensityPercentage to 100. To show no text, set TextDensityPercentage to 0.

If you set TextDensityPercentage to 100, then the software does not plot markers.
Example: 70

MaxTextLength — Maximum length of text labels
40 (default) | positive integer

Maximum length of text labels, specified as a positive integer. The software truncates the text labels
to this length and adds ellipses at the point of truncation.
Example: 10

Font Style

FontName — Font name
system supported font name | 'FixedWidth'

Font name, specified as the name of the font to use or 'FixedWidth'. To display and print properly,
the font name must be a font that your system supports. The default font depends on the specific
operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The 'FixedWidth' value
relies on the root FixedWidthFontName property. Setting the root FixedWidthFontName property
causes an immediate update of the display to use the new font.
Example: 'Cambria'
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FontSize — Font size
10 (default) | scalar value greater than zero

Font size, specified as a scalar value greater than zero in point units. One point equals 1/72 inch. To
change the font units, use the FontUnits property.
Example: 12
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FontAngle — Character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'. Not all fonts have both font styles. Therefore,
the italic font might look the same as the normal font.

FontWeight — Thickness of text characters
'normal' (default) | 'bold'

Thickness of the text characters, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than normal

MATLAB uses the FontWeight property to select a font from those available on your system. Not all
fonts have a bold font weight. Therefore, specifying a bold font weight still can result in the normal
font weight.

FontSmoothing — Smooth font character appearance
'on' (default) | 'off'

Smooth font character appearance, specified as one of these values:

• 'on' — Apply font smoothing. Reduce the appearance of jaggedness in the text characters to
make the text easier to read.

• 'off' — Do not apply font smoothing.

Text Box

EdgeColor — Color of box outline
'none' (default) | RGB triplet | character vector of color name

Color of box outline, specified as 'none', a three-element RGB triplet, or a character vector of a
color name. The default edge color of 'none' makes the box outline invisible.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.
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Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]

BackgroundColor — Color of text box background
'none' (default) | 'data' | RGB triplet

Color of text box background, specified as one of these values:

• 'none'— Make the text box background transparent.
• 'data'— Use background color specified by ColorData. The software automatically chooses a

foreground to complement the background color.
• RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a three-element

row vector whose elements specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0,1]; for example, [0.5 0.6 0.7].

Example: [1 0 0]

Margin — Space around text within text box
3 (default) | positive scalar

The space around the text within the text box, specified as a positive scalar in point units.

MATLAB uses the Extent property value plus the Margin property value to determine the size of the
text box.
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Example: 8
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Markers

MarkerColor — Marker colors
'auto' (default) | 'none' | RGB triplet

Marker colors, specified as one of these values:

• 'auto' — For each marker, use the same color as the corresponding text labels.
• 'none' — Do not show markers.
• RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a three-element

row vector whose elements specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0,1]; for example, [0.5 0.6 0.7].

Example: [1 0 0]

MarkerSize — Marker size
6 (default) | positive scalar

Marker size, specified as a positive scalar.
Example: 10

Data

XData — x values
[] (default) | scalar | vector

x values, specified as a scalar or a vector. The text scatter plot displays an individual marker for each
value in XData.

The input argument X to the textscatter and textscatter3 functions set the x values. XData
and YData must have equal lengths.
Example: [1 2 4 2 6]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
categorical | datetime | duration

XDataSource — Variable linked to XData
'' (default) | character vector containing MATLAB workspace variable name

Variable linked to XData, specified as a character vector containing a MATLAB workspace variable
name. MATLAB evaluates the variable in the base workspace to generate the XData.

By default, there is no linked variable so the value is an empty character vector, ''. If you link a
variable, then MATLAB does not update the XData values immediately. To force an update of the data
values, use the refreshdata function.

Note  If you change one data source property to a variable that contains data of a different
dimension, you might cause the function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.
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Example: 'x'

YData — y values
[] (default) | scalar | vector

y values, specified as a scalar or a vector. The text scatter plot displays an individual marker for each
value in YData.

The input argument Y to the textscatter and textscatter3 functions set the y values. XData
and YData must have equal lengths.
Example: [1 3 3 4 6]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
categorical | datetime | duration

YDataSource — Variable linked to YData
'' (default) | character vector containing MATLAB workspace variable name

Variable linked to YData, specified as a character vector containing a MATLAB workspace variable
name. MATLAB evaluates the variable in the base workspace to generate the YData.

By default, there is no linked variable so the value is an empty character vector, ''. If you link a
variable, then MATLAB does not update the YData values immediately. To force an update of the data
values, use the refreshdata function.

Note  If you change one data source property to a variable that contains data of a different
dimension, you might cause the function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

Example: 'y'

ZData — z values
[] (default) | scalar | vector

z values, specified as a scalar or a vector.

• For 2-D scatter plots, ZData is empty by default.
• For 3-D scatter plots, the input argument Z to the scatter3 function sets the z values. XData,

YData, and ZData must have equal lengths.

Example: [1 2 2 1 0]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
categorical | datetime | duration

ZDataSource — Variable linked to ZData
'' (default) | character vector containing MATLAB workspace variable name

Variable linked to ZData, specified as a character vector containing a MATLAB workspace variable
name. MATLAB evaluates the variable in the base workspace to generate the ZData.

By default, there is no linked variable so the value is an empty character vector, ''. If you link a
variable, then MATLAB does not update the ZData values immediately. To force an update of the data
values, use the refreshdata function.
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Note  If you change one data source property to a variable that contains data of a different
dimension, you might cause the function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

Example: 'z'

ColorData — Text colors
[] (default) | RGB triplet | matrix of RGB triplets | categorical vector

Text colors, specified as one of these values:

• RGB triplet — Use the same color for all the text in the plot. An RGB triplet is a three-element row
vector whose elements specify the intensities of the red, green, and blue components of the color.
The intensities must be in the range [0,1]; for example, [0.5 0.6 0.7].

• Three-column matrix of RGB triplets — Use a different color for each text label in the plot. Each
row of the matrix defines one color. The number of rows must equal the number of text labels.

• Categorical vector — Use a different color for each category in the vector. Specify ColorData as
a vector the same length as XData. Specify the colors for each category using the Colors
property

Example: [1 0 0; 0 1 0; 0 0 1]

Colors — Category colors
matrix of RGB triplets

Category colors, specified as a matrix of RGB triplets. An RGB triplet is a three-element row vector
whose elements specify the intensities of the red, green, and blue components of the color. The
intensities must be in the range [0,1]; for example, [0.5 0.6 0.7].

By default, Colors is equal to the ColorOrder property of the axes object.
Example: [1 0 0; 0 1 0; 0 0 1]

Visibility

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an invisible

object.

Identifiers

Type — Type of graphics object
'textscatter'

This property is read-only.

Type of graphics object, returned as 'textscatter'. Use this property to find all objects of a given
type within a plotting hierarchy; for example, searching for the type using findobj.
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Tag — User-specified tag
'' (default) | character vector

This property is read-only.

User-specified tag to associate with the object, specified as a character vector. Tags provide a way to
identify graphics objects. Use this property to find all objects with a specific tag within a plotting
hierarchy; for example, searching for the tag using findobj.
Example: 'January Data'

UserData — Data to associate with object
[] (default) | any MATLAB data

This property is read-only.

Data to associate with the object, specified as any MATLAB data; for example, a scalar, vector, matrix,
cell array, character array, table, or structure. MATLAB does not use this data.

To associate multiple sets of data or to attach a field name to the data, use the getappdata and
setappdata functions.
Example: 1:100

DisplayName — Text used for legend label
'' (default) | character vector

This property is read-only.

Text used for the legend label, specified as a character vector. If you do not specify the text, then the
legend uses a label of the form 'dataN'. The legend does not display until you call the legend
command.
Example: 'Label Text'

Annotation — Control for including or excluding object from legend
Annotation object

Control for including or excluding the object from a legend, returned as an Annotation object. Set
the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, exclude a stem chart from the legend.

p = plot(1:10,'DisplayName','Line Chart');
hold on
s = stem(1:10,'DisplayName','Stem Chart');
hold off
s.Annotation.LegendInformation.IconDisplayStyle = 'off';
legend('show')

Alternatively, you can control the items in a legend using the legend function. Specify the first input
argument as a vector of the graphics objects to include.

p = plot(1:10,'DisplayName','Line Chart');
hold on
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s = stem(1:10,'DisplayName','Stem Chart');
hold off
legend(p)

Parent/Child

Parent — Parent
Axes object | PolarAxes object | Group object | Transform object

Parent, specified as an Axes, PolarAxes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array | DataTip object array

Children, returned as an empty GraphicsPlaceholder array or a DataTip object array. Use this
property to view a list of data tips that are plotted on the chart.

You cannot add or remove children using the Children property. To add a child to this list, set the
Parent property of the DataTip object to the chart object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of these
values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing unintended

changes to the UI by another function. Set the HandleVisibility to 'off' to temporarily hide
the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by callbacks,
but not from within functions invoked from the command line. This option blocks access to the
object at the command-line, but allows callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object
handles by searching the object hierarchy or querying handle properties cannot return it. This
includes get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on' to list all
object handles regardless of their HandleVisibility property setting.

Interactive Control

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in the base

workspace (not recommended)
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Use this property to execute code when you click the object. If you specify this property using a
function handle, then MATLAB passes two arguments to the callback function when executing the
callback:

• Clicked object — You can access properties of the clicked object from within the callback function.
• Event data — This argument is empty for this property. Replace it with the tilde character (~) in

the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see “Callback
Definition” (MATLAB).

Note If the PickableParts property is set to 'none' or if the HitTest property is set to 'off',
then this callback does not execute.

Example: @myCallback
Example: {@myCallback,arg3}

ContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context menu when
you right-click the object. Create the context menu using the uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set to 'off',
then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its Selected
property to 'on'. If the SelectionHighlight property also is set to 'on', then MATLAB
displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles when selected
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to 'on'.

DataTipTemplate — Data tip content
DataTipTemplate object

Data tip content, specified as a DataTipTemplate object. You can control the content that appears
in a data tip by modifying the properties of the underlying DataTipTemplate object. For a list of
properties, see DataTipTemplate.
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For an example of modifying data tips, see “Create Custom Data Tips” (MATLAB).

Note The DataTipTemplate object is not returned by findobj or findall, and it is not copied by
copyobj.

Callback Execution Control

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Can capture mouse clicks when visible. The Visible property must be set to 'on'
and you must click a part of the TextScatter object that has a defined color. You cannot click a
part that has an associated color property set to 'none'. If the plot contains markers, then the
entire marker is clickable if either the edge or the fill has a defined color. The HitTest property
determines if the TextScatter object responds to the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the TextScatter object passes the click to the
object below it in the current view of the figure window. The HitTest property of the
TextScatter object has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the TextScatter object. If you have defined the
UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the TextScatter object that has a
HitTest property set to 'on' and a PickableParts property value that enables the ancestor to
capture mouse clicks.

Note The PickableParts property determines if the TextScatter object can capture mouse
clicks. If it cannot, then the HitTest property has no effect.

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property determines if a
running callback can be interrupted.

Note There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running callback. The
Interruptible property of the object owning the running callback determines if interruption is
allowed. If interruption is not allowed, then the BusyAction property of the object owning the
interrupting callback determines if it is discarded or put in the queue.
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If the ButtonDownFcn callback of the TextScatter object is the running callback, then the
Interruptible property determines if it another callback can interrupt it:

• 'on' — Interruptible. Interruption occurs at the next point where MATLAB processes the queue,
such as when there is a drawnow, figure, getframe, waitfor, or pause command.

• If the running callback contains one of these commands, then MATLAB stops the execution of
the callback at this point and executes the interrupting callback. MATLAB resumes executing
the running callback when the interrupting callback completes. For more information, see
“Interrupt Callback Execution” (MATLAB).

• If the running callback does not contain one of these commands, then MATLAB finishes
executing the callback without interruption.

• 'off' — Not interruptible. MATLAB finishes executing the running callback without any
interruptions.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' or 'cancel'. The BusyAction property determines how
MATLAB handles the execution of interrupting callbacks.

Note There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running callback. The
Interruptible property of the object owning the running callback determines if interruption is
allowed. If interruption is not allowed, then the BusyAction property of the object owning the
interrupting callback determines if it is discarded or put in the queue.

If the ButtonDownFcn callback of the TextScatter object tries to interrupt a running callback that
cannot be interrupted, then the BusyAction property determines if it is discarded or put in the
queue. Specify the BusyAction property as one of these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running callback
finishes execution. This is the default behavior.

• 'cancel' — Discard the interrupting callback.

Creation and Deletion Control

CreateFcn — Creation callback
'' (default) | function handle | cell array | character vector

Creation callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in the base

workspace (not recommended)
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Use this property to execute code when you create the object. Setting the CreateFcn property on an
existing object has no effect. You must define a default value for this property, or define this property
using a Name,Value pair during object creation. MATLAB executes the callback after creating the
object and setting all of its properties.

If you specify this callback using a function handle, then MATLAB passes two arguments to the
callback function when executing the callback:

• Created object — You can access properties of the object from within the callback function. You
also can access the object through the CallbackObject property of the root, which can be
queried using the gcbo function.

• Event data — This argument is empty for this property. Replace it with the tilde character (~) in
the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see “Callback
Definition” (MATLAB).
Example: @myCallback
Example: {@myCallback,arg3}

DeleteFcn — Deletion callback
'' (default) | function handle | cell array | character vector

Deletion callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in the base

workspace (not recommended)

Use this property to execute code when you delete the object MATLAB executes the callback before
destroying the object so that the callback can access its property values.

If you specify this callback using a function handle, then MATLAB passes two arguments to the
callback function when executing the callback:

• Deleted object — You can access properties of the object from within the callback function. You
also can access the object through the CallbackObject property of the root, which can be
queried using the gcbo function.

• Event data — This argument is empty for this property. Replace it with the tilde character (~) in
the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see “Callback
Definition” (MATLAB).
Example: @myCallback
Example: {@myCallback,arg3}

BeingDeleted — Deletion status
'off' (default) | 'on'

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property to 'on'
when the delete function of the object begins execution (see the DeleteFcn property). The
BeingDeleted property remains set to 'on' until the object no longer exists.
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Check the value of the BeingDeleted property to verify that the object is not about to be deleted
before querying or modifying it.

Compatibility Considerations
UIContextMenu property is not recommended
Not recommended starting in R2020a

Starting in R2020a, using the UIContextMenu property to assign a context menu to a graphics
object or UI component is not recommended. Use the ContextMenu property instead. The property
values are the same.

There are no plans to remove support for the UIContextMenu property at this time. However, the
UIContextMenu property no longer appears in the list returned by calling the get function on a
graphics object or UI component.

See Also
bagOfNgrams | bagOfWords | textscatter | textscatter3 | tokenizedDocument |
wordCloudCounts | wordcloud

Topics
“Visualize Text Data Using Word Clouds”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b
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tfidf
Term Frequency–Inverse Document Frequency (tf-idf) matrix

Syntax
M = tfidf(bag)
M = tfidf(bag,documents)
M = tfidf( ___ ,Name,Value)

Description
M = tfidf(bag) returns a Term Frequency-Inverse Document Frequency (tf-idf) matrix based on
the bag-of-words or bag-of-n-grams model bag.

M = tfidf(bag,documents) returns a tf-idf matrix for the documents in documents by using the
inverse document frequency (IDF) factor computed from bag.

M = tfidf( ___ ,Name,Value) specifies additional options using one or more name-value pair
arguments.

Examples

Create Tf-idf Matrix

Create a Term Frequency–Inverse Document Frequency (tf-idf) matrix from a bag-of-words model.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154

Create a tf-idf matrix. View the first 10 rows and columns.
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M = tfidf(bag);
full(M(1:10,1:10))

ans = 10×10

    3.6507    4.3438    2.7344    3.6507    4.3438    2.2644    3.2452    3.8918    2.4720    2.5520
         0         0         0         0         0    4.5287         0         0         0         0
         0         0         0         0         0         0         0         0         0    2.5520
         0         0         0         0         0    2.2644         0         0         0         0
         0         0         0         0         0    2.2644         0         0         0         0
         0         0         0         0         0    2.2644         0         0         0         0
         0         0         0         0         0         0         0         0         0         0
         0         0         0         0         0         0         0         0         0         0
         0         0         0         0         0    2.2644         0         0         0    2.5520
         0         0    2.7344         0         0         0         0         0         0         0

Create tf-idf Matrix from New Documents

Create a Term Frequency-Inverse Document Frequency (tf-idf) matrix from a bag-of-words model and
an array of new documents.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model from the documents.

bag = bagOfWords(documents) 

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154

Create a tf-idf matrix for an array of new documents using the inverse document frequency (IDF)
factor computed from bag.

newDocuments = tokenizedDocument([
    "what's in a name? a rose by any other name would smell as sweet."
    "if music be the food of love, play on."]);
M = tfidf(bag,newDocuments)

M = 
   (1,7)       3.2452
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   (1,36)      1.2303
   (2,197)     3.4275
   (2,313)     3.6507
   (2,387)     0.6061
   (1,1205)    4.7958
   (1,1835)    3.6507
   (2,1917)    5.0370

Specify TF Weight Formulas

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154

Create a tf-idf matrix. View the first 10 rows and columns.

M = tfidf(bag);
full(M(1:10,1:10))

ans = 10×10

    3.6507    4.3438    2.7344    3.6507    4.3438    2.2644    3.2452    3.8918    2.4720    2.5520
         0         0         0         0         0    4.5287         0         0         0         0
         0         0         0         0         0         0         0         0         0    2.5520
         0         0         0         0         0    2.2644         0         0         0         0
         0         0         0         0         0    2.2644         0         0         0         0
         0         0         0         0         0    2.2644         0         0         0         0
         0         0         0         0         0         0         0         0         0         0
         0         0         0         0         0         0         0         0         0         0
         0         0         0         0         0    2.2644         0         0         0    2.5520
         0         0    2.7344         0         0         0         0         0         0         0

You can change the contributions made by the TF and IDF factors to the tf-idf matrix by specifying
the TF and IDF weight formulas.
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To ignore how many times a word appears in a document, use the binary option of 'TFWeight'.
Create a tf-idf matrix and set 'TFWeight' to 'binary'. View the first 10 rows and columns.

M = tfidf(bag,'TFWeight','binary');
full(M(1:10,1:10))

ans = 10×10

    3.6507    4.3438    2.7344    3.6507    4.3438    2.2644    3.2452    1.9459    2.4720    2.5520
         0         0         0         0         0    2.2644         0         0         0         0
         0         0         0         0         0         0         0         0         0    2.5520
         0         0         0         0         0    2.2644         0         0         0         0
         0         0         0         0         0    2.2644         0         0         0         0
         0         0         0         0         0    2.2644         0         0         0         0
         0         0         0         0         0         0         0         0         0         0
         0         0         0         0         0         0         0         0         0         0
         0         0         0         0         0    2.2644         0         0         0    2.5520
         0         0    2.7344         0         0         0         0         0         0         0

Input Arguments
bag — Input bag-of-words or bag-of-n-grams model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a bagOfNgrams
object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Normalized',true specifies to normalize the frequency counts.

TFWeight — Method to set term frequency factor
'raw' (default) | 'binary' | 'log'

Method to set term frequency (TF) factor, specified as the comma-separated pair consisting of
'TFWeight' and one of the following:

• 'raw' – Set the TF factor to the unchanged term counts.
• 'binary' – Set the TF factor to the matrix of ones and zeros where the ones indicate whether a

term is in a document.
• 'log' – Set the TF factor to 1 + log(bag.Counts).
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Example: 'TFWeight','binary'
Data Types: char

IDFWeight — Method to compute inverse document frequency factor
'normal' (default) | 'textrank' | 'classic-bm25' | 'unary' | 'smooth' | 'max' |
'probabilistic'

Method to compute inverse document frequency factor, specified as the comma-separated pair
consisting of 'IDFWeight' and one of the following:

• 'textrank' – Use TextRank IDF weighting [1]. For each term, set the IDF factor to

• log((N-NT+0.5)/(NT+0.5)) if the term occurs in more than half of the documents, where N
is the number of documents in the input data and NT is the number of documents in the input
data containing each term.

• IDFCorrection*avgIDF if the term occurs in half of the documents or f, where avgIDF is the
average IDF of all tokens.

• 'classic-bm25' – For each term, set the IDF factor to log((N-NT+0.5)/(NT+0.5)).
• 'normal' – For each term, set the IDF factor to log(N/NT).
• 'unary' – For each term, set the IDF factor to 1.
• 'smooth' – For each term, set the IDF factor to log(1+NT/NT).
• 'max' – For each term, set the IDF factor to log(1+max(NT)/NT).
• 'probabilistic' – For each term, set the IDF factor to log((N-NT)/NT).

where N is the number of documents in the input data and NT is the number of documents in the input
data containing each term.
Example: 'IDFWeight','smooth'
Data Types: char

IDFCorrection — Inverse document frequency correction factor
0.25 (default) | nonnegative scalar

Inverse document frequency correction factor, specified as the comma-separated pair consisting of
'IDFCorrection' and a nonnegative scalar.

This option only applies when 'IDFWeight' is 'textrank'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Normalized — Option to normalize term counts
false (default) | true

Option to normalize term counts, specified as the comma-separated pair consisting of 'Normalized'
and true or false. If true, then the function normalizes each vector of term counts in the
Euclidean norm.
Example: 'Normalized',true
Data Types: logical

DocumentsIn — Orientation of output documents
'rows' (default) | 'columns'
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Orientation of output documents in the frequency count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

• 'rows' – Return a matrix of frequency counts with rows corresponding to documents.
• 'columns' – Return a transposed matrix of frequency counts with columns corresponding to

documents.

Data Types: char

ForceCellOutput — Indicator for forcing output to be returned as cell array
false (default) | true

Indicator for forcing output to be returned as cell array, specified as the comma separated pair
consisting of 'ForceCellOutput' and true or false.
Data Types: logical

Output Arguments
M — Output Term Frequency-Inverse Document Frequency matrix
sparse matrix | cell array of sparse matrices

Output Term Frequency-Inverse Document Frequency matrix, specified as a sparse matrix or a cell
array of sparse matrices.

If bag is a non-scalar array or 'ForceCellOutput' is true, then the function returns the outputs as
a cell array of sparse matrices. Each element in the cell array is the tf-idf matrix calculated from the
corresponding element of bag.

References
[1] Barrios, Federico, Federico López, Luis Argerich, and Rosa Wachenchauzer. "Variations of the

Similarity Function of TextRank for Automated Summarization." arXiv preprint
arXiv:1602.03606 (2016).

See Also
bagOfNgrams | bagOfWords | encode | tokenizedDocument | topkngrams | topkwords

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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tokenizedDocument
Array of tokenized documents for text analysis

Description
A tokenized document is a document represented as a collection of words (also known as tokens)
which is used for text analysis.

Use tokenized documents to:

• Detect complex tokens in text, such as web addresses, emoticons, emoji, and hashtags.
• Remove words such as stop words using the removeWords or removeStopWords functions.
• Perform word-level preprocessing tasks such as stemming or lemmatization using the

normalizeWords function.
• Analyze word and n-gram frequencies using bagOfWords and bagOfNgrams objects.
• Add sentence and part-of-speech details using the addSentenceDetails and

addPartOfSpeechDetails functions.
• Add entity tags using the addEntityDetails function.
• View details about the tokens using the tokenDetails function.

The function supports English, Japanese, German, and Korean text. To learn how to use
tokenizedDocument for other languages, see “Language Considerations” on page 1-377.

Creation

Syntax
documents = tokenizedDocument
documents = tokenizedDocument(str)
documents = tokenizedDocument(str,Name,Value)

Description

documents = tokenizedDocument creates a scalar tokenized document with no tokens.

documents = tokenizedDocument(str) tokenizes the elements of a string array and returns a
tokenized document array.

documents = tokenizedDocument(str,Name,Value) specifies additional options using one or
more name-value pair arguments.

Input Arguments

str — Input text
string array | character vector | cell array of character vectors | cell array of string arrays
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Input text, specified as a string array, character vector, cell array of character vectors, or cell array of
string arrays.

If the input text has not already been split into words, then str must be a string array, character
vector, cell array of character vectors, or a cell array of string scalars.
Example: ["an example of a short document";"a second short document"]
Example: 'an example of a single document'
Example: {'an example of a short document';'a second short document'}

If the input text has already been split into words, then specify 'TokenizeMethod' to be 'none'. If
str contains a single document, then it must be a string vector of words, a row cell array of
character vectors, or a cell array containing a single string vector of words. If str contains multiple
documents, then it must be a cell array of string arrays.
Example: ["an" "example" "document"]
Example: {'an','example','document'}
Example: {["an" "example" "of" "a" "short" "document"]}
Example: {["an" "example" "of" "a" "short" "document"];["a" "second" "short"
"document"]}

Data Types: string | char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'DetectPatterns',{'email-address','web-address'} detects email addresses and
web addresses

TokenizeMethod — Method to tokenize documents
'unicode' | 'mecab' | mecabOptions object | 'none'

Method to tokenize documents, specified as the comma-separated pair consisting of
'TokenizeMethod' and one of the following:

• 'unicode' – Tokenize input text using rules based on Unicode® Standard Annex #29 [1] and the
ICU tokenizer [2]. If str is a cell array, then the elements of str must be string scalars or
character vectors. If 'Language' is 'en' or'de', then 'unicode' is the default.

• 'mecab' – Tokenize Japanese and Korean text using the MeCab tokenizer [3]. If 'Language' is
'ja' or 'ko', then 'mecab' is the default.

• mecabOptions object – Tokenize Japanese and Korean text using the MeCab options specified by
a mecabOptions object.

• 'none' – Do not tokenize the input text.

If the input text has already been split into words, then specify 'TokenizeMethod' to be 'none'. If
str contains a single document, then it must be a string vector of words, a row cell array of
character vectors, or a cell array containing a single string vector of words. If str contains multiple
documents, then it must be a cell array of string arrays.
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DetectPatterns — Patterns of complex tokens to detect
'all' (default) | character vector | string array | cell array of character vectors

Patterns of complex tokens to detect, specified as the comma-separated pair consisting of
'DetectPatterns' and 'none', 'all', or a string or cell array containing one or more of the
following.

• 'email-address' – Detect email addresses. For example, treat "user@domain.com" as a
single token.

• 'web-address' – Detect web addresses. For example, treat "https://www.mathworks.com"
as a single token.

• 'hashtag' – Detect hashtags. For example, treat "#MATLAB" as a single token.
• 'at-mention' – Detect at-mentions. For example, treat "@MathWorks" as a single token.
• 'emoticon' – Detect emoticons. For example, treat ":-D" as a single token.

If DetectPatterns is 'none', then the function does not detect any complex token patterns. If
DetectPatterns is 'all', then the function detects all the listed complex token patterns.
Example: 'DetectPatterns','hashtag'
Example: 'DetectPatterns',{'email-address','web-address'}
Data Types: char | string | cell

CustomTokens — Custom tokens to detect
'' (default) | string array | character vector | cell array of character vectors | table

Custom tokens to detect, specified as the comma-separated pair consisting of 'CustomTokens' and
one of the following.

• A string array, character vector, or cell array of character vectors containing the custom tokens.
• A table containing the custom tokens in a column named Token and the corresponding token

types a column named Type.

If you specify the custom tokens as a string array, character vector, or cell array of character vectors,
then the function assigns token type "custom". To specify a custom token type, use table input. To
view the token types, use the tokenDetails function.
Example: 'CustomTokens',["C++" "C#"]
Data Types: char | string | table | cell

RegularExpressions — Regular expressions to detect
'' (default) | string array | character vector | cell array of character vectors | table

Regular expressions to detect, specified as the comma-separated pair consisting of
'RegularExpressions' and one of the following.

• A string array, character vector, or cell array of character vectors containing regular expressions.
• A table containing regular expressions a column named Pattern and the corresponding token

types in a column named Type.

If you specify the regular expressions as a string array, character vector, or cell array of character
vectors, then the function assigns token type "custom". To specify a custom token type, use table
input. To view the token types, use the tokenDetails function.
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Example: 'RegularExpressions',["ver:\d+" "rev:\d+"]
Data Types: char | string | table | cell

TopLevelDomains — Top-level domains to use for web address detection
character vector | string array | cell array of character vectors

Top-level domains to use for web address detection, specified as the comma-separated pair consisting
of 'TopLevelDomains' and a character vector, string array, or cell array of character vectors. By
default, the function uses the output of topLevelDomains.

This option only applies if 'DetectPatterns' is 'all' or contains 'web-address'.
Example: 'TopLevelDomains',["com" "net" "org"]
Data Types: char | string | cell

Language — Language
'en' | 'ja' | 'de' | 'ko'

Language, specified as the comma-separated pair consisting of 'Language' and one of the following.

• 'en' – English. This option also sets the default value for 'TokenizeMethod' to 'unicode'.
• 'ja' – Japanese. This option also sets the default value for 'TokenizeMethod' to 'mecab'.
• 'de' – German. This option also sets the default value for 'TokenizeMethod' to 'unicode'.
• 'ko' – Korean. This option also sets the default value for 'TokenizeMethod' to 'mecab'.

If you do not specify a value, then the function detects the language from the input text using the
corpusLanguage function.

This option specifies the language details of the tokens. To view the language details of the tokens,
use tokenDetails. These language details determine the behavior of the removeStopWords,
addPartOfSpeechDetails, normalizeWords, addSentenceDetails, and addEntityDetails
functions on the tokens.

For more information about language support in Text Analytics Toolbox, see “Language
Considerations”.
Example: 'Language','ja'

Properties
Vocabulary — Unique words in the documents
string array

Unique words in the documents, specified as a string array. The words do not appear in any particular
order.
Data Types: string
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Object Functions

Preprocessing
erasePunctuation Erase punctuation from text and documents
removeStopWords Remove stop words from documents
removeWords Remove selected words from documents or bag-of-words model
normalizeWords Stem or lemmatize words
replaceWords Replace words in documents
replaceNgrams Replace n-grams in documents
removeEmptyDocuments Remove empty documents from tokenized document array, bag-of-words

model, or bag-of-n-grams model
lower Convert documents to lowercase
upper Convert documents to uppercase

Tokens Details
tokenDetails Details of tokens in tokenized document array
addSentenceDetails Add sentence numbers to documents
addPartOfSpeechDetails Add part-of-speech tags to documents
addLanguageDetails Add language identifiers to documents
addTypeDetails Add token type details to documents
addLemmaDetails Add lemma forms of tokens to documents
addEntityDetails Add entity tags to documents

Export
writeTextDocument Write documents to text file

Manipulation and Conversion
doclength Length of documents in document array
context Search documents for word or n-gram occurrences in context
joinWords Convert documents to string by joining words
doc2cell Convert documents to cell array of string vectors
string Convert scalar document to string vector
plus Append documents
replace Replace substrings in documents
docfun Apply function to words in documents
regexprep Replace text in words of documents using regular expression

Display
wordcloud Create word cloud chart from text, bag-of-words model, bag-of-n-grams model, or LDA

model

Examples

Tokenize Text

Create tokenized documents from a string array.
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str = [
    "an example of a short sentence" 
    "a second short sentence"]

str = 2x1 string
    "an example of a short sentence"
    "a second short sentence"

documents = tokenizedDocument(str)

documents = 
  2x1 tokenizedDocument:

    6 tokens: an example of a short sentence
    4 tokens: a second short sentence

Detect Complex Tokens

Create a tokenized document from the string str. By default, the function treats the hashtag
"#MATLAB", the emoticon ":-D", and the web address "https://www.mathworks.com/help" as
single tokens.

str = "Learn how to analyze text in #MATLAB! :-D see https://www.mathworks.com/help/";
document = tokenizedDocument(str)

document = 
  tokenizedDocument:

   11 tokens: Learn how to analyze text in #MATLAB ! :-D see https://www.mathworks.com/help/

To detect only hashtags as complex tokens, specify the 'DetectPatterns' option to be 'hashtag'
only. The function then tokenizes the emoticon ":-D" and the web address "https://
www.mathworks.com/help" into multiple tokens.

document = tokenizedDocument(str,'DetectPatterns','hashtag')

document = 
  tokenizedDocument:

   24 tokens: Learn how to analyze text in #MATLAB ! : - D see https : / / www . mathworks . com / help /

Remove Stop Words from Documents

Remove the stop words from an array of documents using removeStopWords. The
tokenizedDocument function detects that the documents are in English, so removeStopWords
removes English stop words.

documents = tokenizedDocument([
    "an example of a short sentence" 
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    "a second short sentence"]);
newDocuments = removeStopWords(documents)

newDocuments = 
  2x1 tokenizedDocument:

    3 tokens: example short sentence
    3 tokens: second short sentence

Stem Words in Documents

Stem the words in a document array using the Porter stemmer.

documents = tokenizedDocument([
    "a strongly worded collection of words"
    "another collection of words"]);
newDocuments = normalizeWords(documents)

newDocuments = 
  2x1 tokenizedDocument:

    6 tokens: a strongli word collect of word
    4 tokens: anoth collect of word

Specify Custom Tokens

The tokenizedDocument function, by default, splits words and tokens that contain symbols. For
example, the function splits "C++" and "C#" into multiple tokens.

str = "I am experienced in MATLAB, C++, and C#.";
documents = tokenizedDocument(str)

documents = 
  tokenizedDocument:

   14 tokens: I am experienced in MATLAB , C + + , and C # .

To prevent the function from splitting tokens that contain symbols, specify custom tokens using the
'CustomTokens' option.

documents = tokenizedDocument(str,'CustomTokens',["C++" "C#"])

documents = 
  tokenizedDocument:

   11 tokens: I am experienced in MATLAB , C++ , and C# .

The custom tokens have token type "custom". View the token details. The column Type contains the
token types.
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tdetails = tokenDetails(documents)

tdetails=11×5 table
        Token        DocumentNumber    LineNumber       Type        Language
    _____________    ______________    __________    ___________    ________

    "I"                    1               1         letters           en   
    "am"                   1               1         letters           en   
    "experienced"          1               1         letters           en   
    "in"                   1               1         letters           en   
    "MATLAB"               1               1         letters           en   
    ","                    1               1         punctuation       en   
    "C++"                  1               1         custom            en   
    ","                    1               1         punctuation       en   
    "and"                  1               1         letters           en   
    "C#"                   1               1         custom            en   
    "."                    1               1         punctuation       en   

To specify your own token types, input the custom tokens as a table with the tokens in a column
named Token, and the types in a column named Type. To assign a custom type to a token that
doesn't include symbols, include in the table too. For example, create a table that will assign
"MATLAB", "C++", and "C#" to the "programming-language" token type.

T = table;
T.Token = ["MATLAB" "C++" "C#"]';
T.Type = ["programming-language" "programming-language" "programming-language"]'

T=3×2 table
     Token               Type         
    ________    ______________________

    "MATLAB"    "programming-language"
    "C++"       "programming-language"
    "C#"        "programming-language"

Tokenize the text using the table of custom tokens and view the token details.

documents = tokenizedDocument(str,'CustomTokens',T);
tdetails = tokenDetails(documents)

tdetails=11×5 table
        Token        DocumentNumber    LineNumber            Type            Language
    _____________    ______________    __________    ____________________    ________

    "I"                    1               1         letters                    en   
    "am"                   1               1         letters                    en   
    "experienced"          1               1         letters                    en   
    "in"                   1               1         letters                    en   
    "MATLAB"               1               1         programming-language       en   
    ","                    1               1         punctuation                en   
    "C++"                  1               1         programming-language       en   
    ","                    1               1         punctuation                en   
    "and"                  1               1         letters                    en   
    "C#"                   1               1         programming-language       en   
    "."                    1               1         punctuation                en   
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Specify Custom Tokens Using Regular Expressions

The tokenizedDocument function, by default, splits words and tokens containing symbols. For
example, the function splits the text "ver:2" into multiple tokens.

str = "Upgraded to ver:2 rev:3.";
documents = tokenizedDocument(str)

documents = 
  tokenizedDocument:

   9 tokens: Upgraded to ver : 2 rev : 3 .

To prevent the function from splitting tokens that have particular patterns, specify those patterns
using the 'RegularExpressions' option.

Specify regular expressions to detect tokens denoting version and revision numbers: strings of digits
appearing after "ver:" and "rev:" respectively.

documents = tokenizedDocument(str,'RegularExpressions',["ver:\d+" "rev:\d+"])

documents = 
  tokenizedDocument:

   5 tokens: Upgraded to ver:2 rev:3 .

Custom tokens, by default, have token type "custom". View the token details. The column Type
contains the token types.

tdetails = tokenDetails(documents)

tdetails=5×5 table
      Token       DocumentNumber    LineNumber       Type        Language
    __________    ______________    __________    ___________    ________

    "Upgraded"          1               1         letters           en   
    "to"                1               1         letters           en   
    "ver:2"             1               1         custom            en   
    "rev:3"             1               1         custom            en   
    "."                 1               1         punctuation       en   

To specify your own token types, input the regular expressions as a table with the regular expressions
in a column named Pattern and the token types in a column named Type.

T = table;
T.Pattern = ["ver:\d+" "rev:\d+"]';
T.Type = ["version" "revision"]'

T=2×2 table
     Pattern        Type   
    _________    __________

    "ver:\d+"    "version" 
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    "rev:\d+"    "revision"

Tokenize the text using the table of custom tokens and view the token details.

documents = tokenizedDocument(str,'RegularExpressions',T);
tdetails = tokenDetails(documents)

tdetails=5×5 table
      Token       DocumentNumber    LineNumber       Type        Language
    __________    ______________    __________    ___________    ________

    "Upgraded"          1               1         letters           en   
    "to"                1               1         letters           en   
    "ver:2"             1               1         version           en   
    "rev:3"             1               1         revision          en   
    "."                 1               1         punctuation       en   

Search Documents for Word Occurrences

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Search for the word "life".

tbl = context(documents,"life");
head(tbl)

ans=8×3 table
                            Context                             Document    Word
    ________________________________________________________    ________    ____

    "consumst thy self single life ah thou issueless shalt "        9        10 
    "ainted counterfeit lines life life repair times pencil"       16        35 
    "d counterfeit lines life life repair times pencil pupi"       16        36 
    " heaven knows tomb hides life shows half parts write b"       17        14 
    "he eyes long lives gives life thee                    "       18        69 
    "tender embassy love thee life made four two alone sink"       45        23 
    "ves beauty though lovers life beauty shall black lines"       63        50 
    "s shorn away live second life second head ere beautys "       68        27 

View the occurrences in a string array.

tbl.Context

ans = 23x1 string
    "consumst thy self single life ah thou issueless shalt "
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    "ainted counterfeit lines life life repair times pencil"
    "d counterfeit lines life life repair times pencil pupi"
    " heaven knows tomb hides life shows half parts write b"
    "he eyes long lives gives life thee                    "
    "tender embassy love thee life made four two alone sink"
    "ves beauty though lovers life beauty shall black lines"
    "s shorn away live second life second head ere beautys "
    "e rehearse let love even life decay lest wise world lo"
    "st bail shall carry away life hath line interest memor"
    "art thou hast lost dregs life prey worms body dead cow"
    "           thoughts food life sweetseasond showers gro"
    "tten name hence immortal life shall though once gone w"
    " beauty mute others give life bring tomb lives life fa"
    "ve life bring tomb lives life fair eyes poets praise d"
    " steal thyself away term life thou art assured mine li"
    "fe thou art assured mine life longer thy love stay dep"
    " fear worst wrongs least life hath end better state be"
    "anst vex inconstant mind life thy revolt doth lie o ha"
    " fame faster time wastes life thou preventst scythe cr"
    "ess harmful deeds better life provide public means pub"
    "ate hate away threw savd life saying                  "
    " many nymphs vowd chaste life keep came tripping maide"

Tokenize Japanese Text

Tokenize Japanese text using tokenizedDocument. The function automatically detects Japanese
text.

str = [
    "恋に悩み、苦しむ。"
    "恋の悩みで苦しむ。"
    "空に星が輝き、瞬いている。"
    "空の星が輝きを増している。"];
documents = tokenizedDocument(str)

documents = 
  4x1 tokenizedDocument:

     6 tokens: 恋 に 悩み 、 苦しむ 。
     6 tokens: 恋 の 悩み で 苦しむ 。
    10 tokens: 空 に 星 が 輝き 、 瞬い て いる 。
    10 tokens: 空 の 星 が 輝き を 増し て いる 。

Tokenize German Text

Tokenize German text using tokenizedDocument. The function automatically detects German text.

str = [
    "Guten Morgen. Wie geht es dir?"
    "Heute wird ein guter Tag."];
documents = tokenizedDocument(str)
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documents = 
  2x1 tokenizedDocument:

    8 tokens: Guten Morgen . Wie geht es dir ?
    6 tokens: Heute wird ein guter Tag .

More About
Language Considerations

The tokenizedDocument function has built-in rules for English, Japanese, German, and Korean only.
For English and German text, the 'unicode' tokenization method of tokenizedDocument detects
tokens using rules based on Unicode Standard Annex #29 [1] and the ICU tokenizer [2], modified to
better detect complex tokens such as hashtags and URLs. For Japanese and Korean text, the 'mecab'
tokenization method detects tokens using rules based on the MeCab tokenizer [3].

For other languages, you can still try using tokenizedDocument. If tokenizedDocument does not
produce useful results, then try tokenizing the text manually. To create a tokenizedDocument array
from manually tokenized text, set the 'TokenizeMethod' option to 'none'.

For more information, see “Language Considerations”.

Compatibility Considerations
tokenizedDocument detects Korean language
Behavior changed in R2019b

Starting in R2019b, tokenizedDocument detects the Korean language and sets the 'Language'
option to 'ko'. This changes the default behavior of the addSentenceDetails,
addPartOfSpeechDetails, removeStopWords, and normalizeWords functions for Korean
document input. This change allows the software to use Korean-specific rules and word lists for
analysis. If tokenizedDocument incorrectly detects text as Korean, then you can specify the
language manually by setting the 'Language' name-value pair of tokenizedDocument.

In previous versions, tokenizedDocument usually detects Korean text as English and sets the
'Language' option to 'en'. To reproduce this behavior, manually set the 'Language' name-value
pair of tokenizedDocument to 'en'.

tokenizedDocument detects emoticons
Behavior changed in R2018b

Starting in R2018b, tokenizedDocument, by default, detects emoticon tokens. This behavior makes
it easier to analyze text containing emoticons.

In R2017b and R2018a, tokenizedDocument splits emoticon tokens into multiple tokens. To
reproduce this behavior, in tokenizedDocument, specify the 'DetectPatterns' option to be
{'email-address','web-address','hashtag','at-mention'}.

tokenDetails returns token type emoji for emoji characters
Behavior changed in R2018b
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Starting in R2018b, tokenizedDocument detects emoji characters and the tokenDetails function
reports these tokens with type "emoji". This makes it easier to analyze text containing emoji
characters.

In R2018a, tokenDetails reports emoji characters with type "other". To find the indices of the
tokens with type "emoji" or "other", use the indices idx = tdetails.Type == "emoji" |
tdetails.Type == "other", where tdetails is a table of token details.

tokenizedDocument does not split at slash and colon characters between digits
Behavior changed in R2018b

Starting in R2018b, tokenizedDocument does not split at slash, backslash, or colon characters
when they appear between two digits. This behavior produces better results when tokenizing text
containing dates and times.

In previous versions, tokenizedDocument splits at these characters. To reproduce the behavior,
tokenize the text manually or insert whitespace characters around slash, backslash, and colon
characters before using tokenizedDocument.

References
[1] Unicode Text Segmentation. https://www.unicode.org/reports/tr29/

[2] Boundary Analysis. http://userguide.icu-project.org/boundaryanalysis

[3] MeCab: Yet Another Part-of-Speech and Morphological Analyzer. https://taku910.github.io/mecab/

See Also
addEntityDetails | addPartOfSpeechDetails | addSentenceDetails | bagOfNgrams |
bagOfWords | context | joinWords | normalizeWords | removeEmptyDocuments |
removeStopWords | removeWords | replaceNgrams | replaceWords | tokenDetails

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”
“Language Considerations”
“Japanese Language Support”
“German Language Support”

Introduced in R2017b
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textanalytics.ja.mecabToLemma
Extract lemmata from MeCab output for Japanese

Syntax
lemmata = textanalytics.ja.mecabToLemma(words,info)

Description
lemmata = textanalytics.ja.mecabToLemma(words,info) extracts lemmata (normalized
words) given MeCab output in the format returned by the MeCab-ipadic dictionary.

Input Arguments
words — Input tokens
string vector

Input tokens, specified as a string vector.
Data Types: string

info — Information struct
struct

Information struct with the following fields:

• Feature – String vector of tokens of the same size as words containing the MeCab output lines in
ChaSen format without the split tokens themselves.

• PartOfSpeech – Numerical code used inside the MeCab-ipadic dictionary for the part-of-speech
classification.

Data Types: struct

Output Arguments
lemmata — Extracted lemmata
string vector

Extracted lemmata, returned as a string vector the same size as words.

See Also
addLemmaDetails | mecabOptions | normalizeWords | textanalytics.ja.mecabToNER |
textanalytics.ja.mecabToPOS | tokenizedDocument

Topics
“Japanese Language Support”
“Analyze Japanese Text Data”
“Language Considerations”
“Language-Independent Features”
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Introduced in R2019b
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textanalytics.ja.mecabToNER
Extract named entity information from MeCab output for Japanese

Syntax
entities = textanalytics.ja.mecabToNER(words,info)

Description
entities = textanalytics.ja.mecabToNER(words,info) extracts named entity information
given MeCab output in the format returned by the MeCab-ipadic dictionary.

Input Arguments
words — Input tokens
string vector

Input tokens, specified as a string vector.
Data Types: string

info — Information struct
struct

Information struct with the following fields:

• Feature – String vector of tokens of the same size as words containing the MeCab output lines in
ChaSen format without the split tokens themselves.

• PartOfSpeech – Numerical code used inside the MeCab-ipadic dictionary for the part-of-speech
classification.

Data Types: struct

Output Arguments
entities — Extracted entity information
categorical vector

Extracted entity information, returned as a categorical vector the same size as words.

See Also
addEntityDetails | mecabOptions | textanalytics.ja.mecabToLemma |
textanalytics.ja.mecabToPOS | tokenizedDocument

Topics
“Japanese Language Support”
“Analyze Japanese Text Data”
“Language Considerations”
“Language-Independent Features”
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Introduced in R2019b
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textanalytics.ja.mecabToPOS
Extract part-of-speech information from MeCab output for Japanese

Syntax
posTags = textanalytics.ja.mecabToPOS(words,info)

Description
posTags = textanalytics.ja.mecabToPOS(words,info) extracts part-of-speech information
given MeCab output in the format returned by the MeCab-ipadic dictionary.

Input Arguments
words — Input tokens
string vector

Input tokens, specified as a string vector.
Data Types: string

info — Information struct
struct

Information struct with the following fields:

• Feature – String vector of tokens of the same size as words containing the MeCab output lines in
ChaSen format without the split tokens themselves.

• PartOfSpeech – Numerical code used inside the MeCab-ipadic dictionary for the part-of-speech
classification.

Data Types: struct

Output Arguments
posTags — Extracted part-of-speech information
categorical vector

Extracted part-of-speech information, returned as a categorical vector the same size as words.

See Also
addPartOfSpeechDetails | mecabOptions | textanalytics.ja.mecabToLemma |
textanalytics.ja.mecabToNER | tokenizedDocument

Topics
“Japanese Language Support”
“Analyze Japanese Text Data”
“Language Considerations”
“Language-Independent Features”
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Introduced in R2019b
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textrankScores
Document scoring with TextRank algorithm

Syntax
scores = textrankScores(documents)
scores = textrankScores(bag)

Description
scores = textrankScores(documents) scores documents for importance according to pairwise
similarity values using the TextRank algorithm. To compute similarities and importance scores, the
function uses the BM25 and PageRank algorithms, respectively.

scores = textrankScores(bag) scores documents encoded by a bag-of-words or bag-of-n-grams
model bag.

Examples

Importance of Documents

Create an array of tokenized documents.

str = [
    "the quick brown fox jumped over the lazy dog"
    "the fast brown fox jumped over the lazy dog"
    "the lazy dog sat there and did nothing"
    "the other animals sat there watching"];
documents = tokenizedDocument(str)

documents = 
  4x1 tokenizedDocument:

    9 tokens: the quick brown fox jumped over the lazy dog
    9 tokens: the fast brown fox jumped over the lazy dog
    8 tokens: the lazy dog sat there and did nothing
    6 tokens: the other animals sat there watching

Calculate the TextRank scores.

scores = textrankScores(documents);

Visualize the scores in a bar chart.

figure
bar(scores)
xlabel("Document")
ylabel("Score")
title("TextRank Scores")
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Scores Using Bag-of-Words Model

Create a bag-of-words model from the text data in sonnets.csv.

filename = "sonnets.csv";
tbl = readtable(filename,'TextType','string');
textData = tbl.Sonnet;
documents = tokenizedDocument(textData);
bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [154x3527 double]
      Vocabulary: [1x3527 string]
        NumWords: 3527
    NumDocuments: 154

Calculate the TextRank scores.

scores = textrankScores(bag);

Visualize the scores in a bar chart.
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figure
bar(scores)
xlabel("Document")
ylabel("Score")
title("TextRank Scores")

Input Arguments
documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is not a tokenizedDocument array, then it must be a row vector
representing a single document, where each element is a word. To specify multiple documents, use a
tokenizedDocument array.

bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a bagOfNgrams
object. If bag is a bagOfNgrams object, then the function treats each n-gram as a single word.
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Output Arguments
scores — TextRank scores
vector

TextRank scores, returned as a N-by-1 vector, where scores(i) corresponds to the score for the ith
input document and N is the number of input documents.

References
[1] Mihalcea, Rada, and Paul Tarau. "TextRank: Bringing Order Into Text." In Proceedings of the 2004

Conference on Empirical Methods in Natural Language Processing, pp. 404-411. 2004.

See Also
bleuEvaluationScore | bm25Similarity | cosineSimilarity | extractSummary |
lexrankScores | mmrScores | rougeEvaluationScore | tokenizedDocument

Topics
“Sequence-to-Sequence Translation Using Attention”

Introduced in R2020a

1 Functions

1-388



tokenDetails
Details of tokens in tokenized document array

Syntax
tdetails = tokenDetails(documents)

Description
tdetails = tokenDetails(documents) returns a table of token details for the tokens in the
tokenizedDocument array documents.

Examples

View Token Details of Documents

Create a tokenized document array.

str = [ ...
    "This is an example document. It has two sentences."
    "This document has one sentence and an emoticon. :)"
    "Here is another example document. :D"];
documents = tokenizedDocument(str);

View the token details of the first few tokens.

tdetails = tokenDetails(documents);
head(tdetails)

ans=8×5 table
      Token       DocumentNumber    LineNumber       Type        Language
    __________    ______________    __________    ___________    ________

    "This"              1               1         letters           en   
    "is"                1               1         letters           en   
    "an"                1               1         letters           en   
    "example"           1               1         letters           en   
    "document"          1               1         letters           en   
    "."                 1               1         punctuation       en   
    "It"                1               1         letters           en   
    "has"               1               1         letters           en   

The type variable contains the type of each token. View the emoticons in the documents.

idx = tdetails.Type == "emoticon";
tdetails(idx,:)

ans=2×5 table
    Token    DocumentNumber    LineNumber      Type      Language
    _____    ______________    __________    ________    ________
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    ":)"           2               1         emoticon       en   
    ":D"           3               1         emoticon       en   

Add Sentence Details to Documents

Create a tokenized document array.

str = [ ...
    "This is an example document. It has two sentences."
    "This document has one sentence."
    "Here is another example document. It also has two sentences."];
documents = tokenizedDocument(str);

Add sentence details to the documents using addSentenceDetails. This function adds the sentence
numbers to the table returned by tokenDetails. View the updated token details of the first few
tokens.

documents = addSentenceDetails(documents);
tdetails = tokenDetails(documents);
head(tdetails)

ans=8×6 table
      Token       DocumentNumber    SentenceNumber    LineNumber       Type        Language
    __________    ______________    ______________    __________    ___________    ________

    "This"              1                 1               1         letters           en   
    "is"                1                 1               1         letters           en   
    "an"                1                 1               1         letters           en   
    "example"           1                 1               1         letters           en   
    "document"          1                 1               1         letters           en   
    "."                 1                 1               1         punctuation       en   
    "It"                1                 2               1         letters           en   
    "has"               1                 2               1         letters           en   

View the token details of the second sentence of the third document.

idx = tdetails.DocumentNumber == 3 & ...
    tdetails.SentenceNumber == 2;
tdetails(idx,:)

ans=6×6 table
       Token       DocumentNumber    SentenceNumber    LineNumber       Type        Language
    ___________    ______________    ______________    __________    ___________    ________

    "It"                 3                 2               1         letters           en   
    "also"               3                 2               1         letters           en   
    "has"                3                 2               1         letters           en   
    "two"                3                 2               1         letters           en   
    "sentences"          3                 2               1         letters           en   
    "."                  3                 2               1         punctuation       en   
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Add Part-of-Speech Details to Documents

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

View the token details of the first few tokens.

tdetails = tokenDetails(documents);
head(tdetails)

ans=8×5 table
       Token       DocumentNumber    LineNumber     Type      Language
    ___________    ______________    __________    _______    ________

    "fairest"            1               1         letters       en   
    "creatures"          1               1         letters       en   
    "desire"             1               1         letters       en   
    "increase"           1               1         letters       en   
    "thereby"            1               1         letters       en   
    "beautys"            1               1         letters       en   
    "rose"               1               1         letters       en   
    "might"              1               1         letters       en   

Add part-of-speech details to the documents using the addPartOfSpeechDetails function. This
function first adds sentence information to the documents, and then adds the part-of-speech tags to
the table returned by tokenDetails. View the updated token details of the first few tokens.

documents = addPartOfSpeechDetails(documents);
tdetails = tokenDetails(documents);
head(tdetails)

ans=8×7 table
       Token       DocumentNumber    SentenceNumber    LineNumber     Type      Language     PartOfSpeech 
    ___________    ______________    ______________    __________    _______    ________    ______________

    "fairest"            1                 1               1         letters       en       adjective     
    "creatures"          1                 1               1         letters       en       noun          
    "desire"             1                 1               1         letters       en       verb          
    "increase"           1                 1               1         letters       en       noun          
    "thereby"            1                 1               1         letters       en       adverb        
    "beautys"            1                 1               1         letters       en       verb          
    "rose"               1                 1               1         letters       en       noun          
    "might"              1                 1               1         letters       en       auxiliary-verb

Input Arguments
documents — Input documents
tokenizedDocument array
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Input documents, specified as a tokenizedDocument array.

Output Arguments
tdetails — Table of token details
table

Table of token details. tdetails has the following variables:

Name Description
Token Token text, returned as a string scalar.
DocumentNumber Index of document that the token belongs to,

returned as a positive integer.
SentenceNumber Sentence number of token in document, returned

as a positive integer. If these details are missing,
then first add sentence details to documents
using the addSentenceDetails function.

LineNumber Line number of token in document, returned as a
positive integer.

Type The type of token, returned as one of the
following:

• 'letters' – string of letter characters only
• 'digits' – string of digits only
• 'punctuation' – string of punctuation and

symbol characters only
• 'email-address' – detected email address
• 'web-address' – detected web address
• 'hashtag' – detected hashtag (starts with

"#" character followed by a letter)
• 'at-mention' – detected at-mention (starts

with "@" character)
• 'emoticon' – detected emoticon
• 'emoji' – detected emoji
• 'other' – does not belong to the previous

types and is not a custom type

If these details are missing, then first add type
details to documents using the
addTypeDetails function.
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Name Description
Language Language of the token, returned as one of the

following:

• 'en' – English
• 'ja' – Japanese
• 'de' – German
• 'ko' – Korean

These language details determine the behavior of
the removeStopWords,
addPartOfSpeechDetails, normalizeWords,
addSentenceDetails, and
addEntityDetails functions on the tokens.

If these details are missing, then first add
language details to documents using the
addLanguageDetails function.

For more information about language support in
Text Analytics Toolbox, see “Language
Considerations”.

 tokenDetails

1-393



Name Description
PartOfSpeech Part of speech tag, specified as one of the

following:

• 'adjective'
• 'adposition'
• 'adverb'
• 'auxiliary-verb'
• 'coord-conjunction'
• 'determiner'
• 'interjection'
• 'noun'
• 'numeral'
• 'particle'
• 'pronoun'
• 'proper-noun'
• 'punctuation'
• 'subord-conjunction'
• 'symbol'
• 'verb'
• 'other'

If these details are missing, then first add part-of-
speech details to documents using the
addPartOfSpeechDetails function.

Entity Entity tag, specified as one of the following:

• 'location' – detected location
• 'organization' – detected organization
• 'person' – detected person
• 'other' – detected entity, not belonging to

the above categories
• 'non-entity' – no entity detected

If these details are missing, then first add entity
details to documents using the
addEntityDetails function.

Lemma Lemma form. If these details are missing, then
first lemma details to documents using the
addLemmaDetails function.
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Compatibility Considerations
tokenDetails returns token type emoji for emoji characters
Behavior changed in R2018b

Starting in R2018b, tokenizedDocument detects emoji characters and the tokenDetails function
reports these tokens with type "emoji". This makes it easier to analyze text containing emoji
characters.

In R2018a, tokenDetails reports emoji characters with type "other". To find the indices of the
tokens with type "emoji" or "other", use the indices idx = tdetails.Type == "emoji" |
tdetails.Type == "other", where tdetails is a table of token details.

See Also
addEntityDetails | addLanguageDetails | addLemmaDetails | addPartOfSpeechDetails |
addSentenceDetails | addTypeDetails | normalizeWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Language Considerations”
“Japanese Language Support”
“German Language Support”

Introduced in R2018a
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topkwords
Most important words in bag-of-words model or LDA topic

Syntax
tbl = topkwords(bag)
tbl = topkwords(bag,k)

tbl = topkwords(ldaMdl,k,topicIdx)

tbl = topkwords( ___ ,Name,Value)

Description
tbl = topkwords(bag) returns a table of the five words with the largest word counts in bag-of-
words model bag.

tbl = topkwords(bag,k) returns a table of the k words with the largest word counts.

tbl = topkwords(ldaMdl,k,topicIdx) returns a table of the k words with the highest
probabilities in the latent Dirichlet allocation (LDA) topic topicIdx in the LDA model ldaMdl.

tbl = topkwords( ___ ,Name,Value) specifies additional options using one or more name-value
pair arguments.

Examples

Most Frequent Words of Bag-of-Words Model

Create a table of the most frequent words of a bag-of-words model.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents) 

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
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        NumWords: 3092
    NumDocuments: 154

Find the top five words.

T = topkwords(bag);

Find the top 20 words in the model.

k = 20;
T = topkwords(bag,k)

T=20×2 table
      Word      Count
    ________    _____

    "thy"        281 
    "thou"       234 
    "love"       162 
    "thee"       161 
    "doth"        88 
    "mine"        63 
    "shall"       59 
    "eyes"        56 
    "sweet"       55 
    "time"        53 
    "beauty"      52 
    "nor"         52 
    "art"         51 
    "yet"         51 
    "o"           50 
    "heart"       50 
      ⋮

Highest Probability Words of LDA Topic

Create a table of the words with highest probability of an LDA topic.

To reproduce the results, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.
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bag = bagOfWords(documents);

Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.

numTopics = 20;
mdl = fitlda(bag,numTopics,'Verbose',0);

Find the top 20 words of the first topic.

k = 20;
topicIdx = 1;
tbl = topkwords(mdl,k,topicIdx)

tbl=20×2 table
      Word        Score  
    ________    _________

    "eyes"        0.11155
    "beauty"      0.05777
    "hath"       0.055778
    "still"      0.049801
    "true"       0.043825
    "mine"       0.033865
    "find"       0.031873
    "black"      0.025897
    "look"       0.023905
    "tis"        0.023905
    "kind"       0.021913
    "seen"       0.021913
    "found"      0.017929
    "sin"        0.015937
    "three"      0.013945
    "golden"    0.0099608
      ⋮

Find the top 20 words of the first topic and use inverse mean scaling on the scores.

tbl = topkwords(mdl,k,topicIdx,'Scaling','inversemean')

tbl=20×2 table
      Word       Score  
    ________    ________

    "eyes"        1.2718
    "beauty"     0.59022
    "hath"        0.5692
    "still"      0.50269
    "true"       0.43719
    "mine"       0.32764
    "find"       0.32544
    "black"      0.25931
    "tis"        0.23755
    "look"       0.22519
    "kind"       0.21594
    "seen"       0.21594
    "found"      0.17326
    "sin"        0.15223
    "three"      0.13143
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    "golden"    0.090698
      ⋮

Create a word cloud using the scaled scores as the size data.

figure
wordcloud(tbl.Word,tbl.Score);

Input Arguments
bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

k — Number of words
nonnegative integer

Number of words to return, specified as a positive integer.
Example: 20

ldaMdl — Input LDA model
ldaModel object
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Input LDA model, specified as an ldaModel object.

topicIdx — Index of LDA topic
nonnegative integer

Index of LDA topic, specified as a nonnegative integer.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Scaling','inversemean' specifies to use inverse mean scaling on the topic word
probabilities.

ForceCellOutput — Indicator for forcing output to be returned as cell array
false (default) | true

Indicator for forcing output to be returned as cell array, specified as the comma separated pair
consisting of 'ForceCellOutput' and true or false.

This option only applies if the input data is a bag-of-words model.
Data Types: logical

Scaling — Scaling to apply to topic word probabilities
'none' (default) | 'inversemean'

Scaling to apply to topic word probabilities, specified as the comma-separated pair consisting of
'Scaling' and one of the following:

• 'none' – Return posterior word probabilities.
• 'inversemean' – Normalize the posterior word probabilities per topic by the geometric mean of

the posterior probabilities for this word across all topics. The function uses the formula
Phi.*(log(Phi)-mean(log(Phi),1)), where Phi corresponds to
ldaMdl.TopicWordProbabilities.

This option only applies if the input data is an LDA model.
Example: 'Scaling','inversemean'
Data Types: char

Output Arguments
tbl — Table of top words
table | cell array of tables

Table of top words sorted in order of importance or a cell array of tables.

When the input is a bag-of-words model, the table has the following columns:

Word Word specified as a string
Count Number of times the word appears in the bag-of-words model
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If bag is a non-scalar array or 'ForceCellOutput' is true, then the function returns the outputs as
a cell array of tables. Each element in the cell array is a table containing the top words of the
corresponding element of bag.

When the input is an LDA model, the table has the following columns:

Word Word specified as a string
Score Word probability for the given LDA topic

Tips
• To find the most frequently seen n-grams in a bag-of-n-grams model, use topkngrams.

See Also
bagOfNgrams | bagOfWords | ldaModel | removeInfrequentWords | removeWords | tfidf |
tokenizedDocument | topkngrams

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b
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topkngrams
Most frequent n-grams

Syntax
tbl = topkngrams(bag)
tbl = topkngrams(bag,k)
tbl = topkngrams( ___ ,Name,Value)

Description
tbl = topkngrams(bag) returns a table listing the five most frequently seen n-grams in the bag-of-
n-grams model bag.

tbl = topkngrams(bag,k) lists the k most frequently seen n-grams in the bag-of-n-grams model
bag.

tbl = topkngrams( ___ ,Name,Value) specifies additional options using one or more name-value
pair arguments.

Examples

Most Frequent Bigrams of Bag-of-N-Grams Model

Create a table of the most frequent bigrams of a bag-of-n-grams model.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-n-grams model.

bag = bagOfNgrams(documents)

bag = 
  bagOfNgrams with properties:

          Counts: [154×8799 double]
      Vocabulary: [1×3092 string]
          Ngrams: [8799×2 string]
    NgramLengths: 2
       NumNgrams: 8799
    NumDocuments: 154
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Find the top 5 bigrams.

tbl = topkngrams(bag)

tbl=5×3 table
         Ngram          Count    NgramLength
    ________________    _____    ___________

    "thou"    "art"      34           2     
    "mine"    "eye"      15           2     
    "thy"     "self"     14           2     
    "thou"    "dost"     13           2     
    "mine"    "own"      13           2     

Find the top 10 bigrams.

tbl = topkngrams(bag,10)

tbl=10×3 table
          Ngram          Count    NgramLength
    _________________    _____    ___________

    "thou"    "art"       34           2     
    "mine"    "eye"       15           2     
    "thy"     "self"      14           2     
    "thou"    "dost"      13           2     
    "mine"    "own"       13           2     
    "thy"     "sweet"     12           2     
    "thy"     "love"      11           2     
    "dost"    "thou"      10           2     
    "thou"    "wilt"      10           2     
    "love"    "thee"       9           2     

Count N-Grams of Different Lengths

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-n-grams model. To count n-grams of length 2 and 3 (bigrams and trigrams), specify
'NgramLengths' to be the vector [2 3].

bag = bagOfNgrams(documents,'NgramLengths',[2 3])

bag = 
  bagOfNgrams with properties:

          Counts: [154×18022 double]
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      Vocabulary: [1×3092 string]
          Ngrams: [18022×3 string]
    NgramLengths: [2 3]
       NumNgrams: 18022
    NumDocuments: 154

View the 10 most common n-grams of length 2 (bigrams).

topkngrams(bag,10,'NGramLengths',2)

ans=10×3 table
             Ngram             Count    NgramLength
    _______________________    _____    ___________

    "thou"    "art"      ""     34           2     
    "mine"    "eye"      ""     15           2     
    "thy"     "self"     ""     14           2     
    "thou"    "dost"     ""     13           2     
    "mine"    "own"      ""     13           2     
    "thy"     "sweet"    ""     12           2     
    "thy"     "love"     ""     11           2     
    "dost"    "thou"     ""     10           2     
    "thou"    "wilt"     ""     10           2     
    "love"    "thee"     ""      9           2     

View the 10 most common n-grams of length 3 (trigrams).

 topkngrams(bag,10,'NGramLengths',3)

ans=10×3 table
               Ngram                Count    NgramLength
    ____________________________    _____    ___________

    "thy"     "sweet"    "self"       4           3     
    "why"     "dost"     "thou"       4           3     
    "thy"     "self"     "thy"        3           3     
    "thou"    "thy"      "self"       3           3     
    "mine"    "eye"      "heart"      3           3     
    "thou"    "shalt"    "find"       3           3     
    "fair"    "kind"     "true"       3           3     
    "thou"    "art"      "fair"       2           3     
    "love"    "thy"      "self"       2           3     
    "thy"     "self"     "thou"       2           3     

Input Arguments
bag — Input bag-of-n-grams model
bagOfNgrams object

Input bag-of-n-grams model, specified as a bagOfNgrams object.

k — Number of n-grams
nonnegative integer
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Number of n-grams to return, specified as a positive integer.
Example: 20

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NgramLengths',[2 3] specifies to return the top bigrams and trigrams.

NgramLengths — N-gram lengths
positive integer | vector of positive integers

N-gram lengths, specified as the comma separated pair consisting of 'NgramLengths' and a positive
integer or a vector of positive integers.

If you specify NgramLengths, then the function returns n-grams of these lengths only. If you do not
specify NgramLengths, then the function returns the top n-grams regardless of length.
Example: [1 2 3]

ForceCellOutput — Indicator for forcing output to be returned as cell array
false (default) | true

Indicator for forcing output to be returned as cell array, specified as the comma separated pair
consisting of 'ForceCellOutput' and true or false.
Data Types: logical

Output Arguments
tbl — Table of top n-grams
table | cell array of tables

Table of top n-grams sorted in order of frequency or a cell array of tables.

The table has the following columns:

Ngram N-gram specified as a string vector
Count Number of times the n-gram appears in the bag-of-n-grams model.
NgramLength Length of the n-gram.

If bag is a non-scalar array or 'ForceCellOutput' is true, then the function returns the outputs as
a cell array of tables. Each element in the cell array is a table containing the top n-grams of the
corresponding element of bag.

See Also
bagOfNgrams | bagOfWords | removeInfrequentNgrams | removeNgrams | tfidf |
tokenizedDocument | topkwords

Topics
“Prepare Text Data for Analysis”
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“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2018a
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topLevelDomains
List of top-level domains

Syntax
domains = topLevelDomains

Description
domains = topLevelDomains returns a string array of common top-level internet domain names
which you can use to tokenize documents containing URLs.

Examples

List of Top-Level Domains

View list of top-level domains used to detect web addresses in strings. Reshape the output for
readability.

domains = topLevelDomains;
reshape(domains, [], 5)

ans = 51x5 string
    "com"     "ck"    "hn"    "mp"    "si"
    "edu"     "cl"    "hr"    "mq"    "sj"
    "gov"     "cm"    "ht"    "mr"    "sk"
    "int"     "cn"    "hu"    "ms"    "sl"
    "mil"     "co"    "id"    "mt"    "sm"
    "net"     "cr"    "ie"    "mu"    "sn"
    "org"     "cu"    "il"    "mv"    "so"
    "info"    "cv"    "im"    "mw"    "sr"
    "ac"      "cw"    "in"    "mx"    "st"
    "ad"      "cx"    "io"    "my"    "su"
    "ae"      "cy"    "iq"    "mz"    "sv"
    "af"      "cz"    "ir"    "na"    "sx"
    "ag"      "de"    "is"    "nc"    "sy"
    "ai"      "dj"    "it"    "ne"    "sz"
    "am"      "dk"    "je"    "nf"    "tc"
    "ao"      "dm"    "jm"    "ng"    "td"
    "aq"      "do"    "jo"    "ni"    "tf"
    "ar"      "dz"    "jp"    "nl"    "tg"
    "as"      "ec"    "ke"    "no"    "th"
    "at"      "ee"    "kg"    "np"    "tj"
    "au"      "eg"    "kh"    "nr"    "tk"
    "aw"      "er"    "ki"    "nu"    "tl"
    "ax"      "es"    "km"    "nz"    "tm"
    "az"      "et"    "kp"    "om"    "tn"
    "ba"      "eu"    "kr"    "pa"    "to"
    "bb"      "fi"    "kw"    "pe"    "tr"
    "bd"      "fj"    "ky"    "pf"    "tt"
    "be"      "fk"    "kz"    "pg"    "tv"
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    "bf"      "fm"    "la"    "ph"    "tw"
    "bg"      "fo"    "lb"    "pk"    "tz"
      ⋮

See Also
addPartOfSpeechDetails | addSentenceDetails | addTypeDetails | tokenDetails |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2018a

1 Functions

1-408



trainWordEmbedding
Train word embedding

Syntax
emb = trainWordEmbedding(filename)
emb = trainWordEmbedding(documents)
emb = trainWordEmbedding( ___ ,Name,Value)

Description
emb = trainWordEmbedding(filename) trains a word embedding using the training data stored
in the text file filename. The file is a collection of documents stored in UTF-8 with one document per
line and words separated by whitespace.

emb = trainWordEmbedding(documents) trains a word embedding using documents by creating
a temporary file with writeTextDocument, and then trains an embedding using the temporary file.

emb = trainWordEmbedding( ___ ,Name,Value) specifies additional options using one or more
name-value pair arguments. For example, 'Dimension',50 specifies the word embedding dimension
to be 50.

Examples

Train Word Embedding from File

Train a word embedding of dimension 100 using the example text file
exampleSonnetsDocuments.txt. This file contains preprocessed versions of Shakespeare's
sonnets, with one sonnet per line and words separated by a space.

filename = "exampleSonnetsDocuments.txt";
emb = trainWordEmbedding(filename)

Training: 100% Loss: 2.72511  Remaining time: 0 hours 0 minutes.

emb = 
  wordEmbedding with properties:

     Dimension: 100
    Vocabulary: [1×502 string]

View the word embedding in a text scatter plot using tsne.

words = emb.Vocabulary;
V = word2vec(emb,words);
XY = tsne(V);
textscatter(XY,words)
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Train Word Embedding from Documents

Train a word embedding using the example data sonnetsPreprocessed.txt. This file contains
preprocessed versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text into
documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Train a word embedding using trainWordEmbedding.

emb = trainWordEmbedding(documents)

Training: 100% Loss: 2.72115  Remaining time: 0 hours 0 minutes.

emb = 
  wordEmbedding with properties:

     Dimension: 100
    Vocabulary: [1x401 string]
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Visualize the word embedding in a text scatter plot using tsne.

words = emb.Vocabulary;
V = word2vec(emb,words);
XY = tsne(V);
textscatter(XY,words)

Specify Word Embedding Options

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Specify the word embedding dimension to be 50. To reduce the number of words discarded by the
model, set 'MinCount' to 3. To train for longer, set the number of epochs to 10.

emb = trainWordEmbedding(documents, ...
    'Dimension',50, ...
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    'MinCount',3, ...
    'NumEpochs',10)

Training: 100% Loss: 3.14143  Remaining time: 0 hours 0 minutes.

emb = 
  wordEmbedding with properties:

     Dimension: 50
    Vocabulary: [1x750 string]

View the word embedding in a text scatter plot using tsne.

words = emb.Vocabulary;
V = word2vec(emb, words);
XY = tsne(V);
textscatter(XY,words)

Input Arguments
filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.
Data Types: string | char
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documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Dimension',50 specifies the word embedding dimension to be 50.

Dimension — Dimension of word embedding
100 (default) | positive integer

Dimension of the word embedding, specified as the comma-separated pair consisting of
'Dimension' and a nonnegative integer.
Example: 300

Window — Size of context window
5 (default) | nonnegative integer

Size of the context window, specified as the comma-separated pair consisting of 'Window' and a
nonnegative integer.
Example: 10

Model — Model
'skipgram' (default) | 'cbow'

Model, specified as the comma-separated pair consisting of 'Model' and 'skipgram' (skip gram) or
'cbow' (continuous bag-of-words).
Example: 'cbow'

DiscardFactor — Factor to determine word discard rate
1e-4 (default) | positive scalar

Factor to determine the word discard rate, specified as the comma-separated pair consisting of
'DiscardFactor' and a positive scalar. The function discards a word from the input window with
probability 1-sqrt(t/f) - t/f where f is the unigram probability of the word, and t is
DiscardFactor. Usually, DiscardFactor is in the range of 1e-3 through 1e-5.
Example: 0.005

LossFunction — Loss function
'ns' (default) | 'hs' | 'softmax'

Loss function, specified as the comma-separated pair consisting of 'LossFunction' and 'ns'
(negative sampling), 'hs' (hierarchical softmax), or 'softmax' (softmax).
Example: 'hs'

NumNegativeSamples — Number of negative samples
5 (default) | positive integer
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Number of negative samples for the negative sampling loss function, specified as the comma-
separated pair consisting of 'NumNegativeSamples' and a positive integer. This option is only valid
when LossFunction is 'ns'.
Example: 10

NumEpochs — Number of epochs
5 (default) | positive integer

Number of epochs for training, specified as the comma-separated pair consisting of 'NumEpochs'
and a positive integer.
Example: 10

MinCount — Minimum count of words
5 (default) | positive integer

Minimum count of words to include in the embedding, specified as the comma-separated pair
consisting of 'MinCount' and a positive integer. The function discards words that appear fewer than
MinCount times in the training data from the vocabulary.
Example: 10

NGramRange — Inclusive range for subword n-grams
[3 6] (default) | vector of two nonnegative integers

Inclusive range for subword n-grams, specified as the comma-separated pair consisting of
'NGramRange' and a vector of two nonnegative integers [min max]. If you do not want to use n-
grams, then set 'NGramRange' to [0 0].
Example: [5 10]

InitialLearnRate — Initial learn rate
0.05 (default) | positive scalar

Initial learn rate, specified as the comma-separated pair consisting of 'InitialLearnRate' and a
positive scalar.
Example: 0.01

UpdateRate — Rate for updating learn rate
100 (default) | positive integer

Rate for updating the learn rate, specified as the comma-separated pair consisting of 'UpdateRate'
and a positive integer. The learn rate decreases to zero linearly in steps every N words where N is the
UpdateRate.
Example: 50

Verbose — Verbosity level
1 (default) | 0

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and one of the
following:

• 0 – Do not display verbose output.
• 1 – Display progress information.
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Example: 'Verbose',0

Output Arguments
emb — Output word embedding
word embedding

Output word embedding, returned as a wordEmbedding object.

More About
Language Considerations

File input to the trainWordEmbedding function requires words separated by whitespace.

For files containing non-English text, you might need to input a tokenizedDocument array to
trainWordEmbedding.

To create a tokenizedDocument array from pretokenized text, use the tokenizedDocument
function and set the 'TokenizeMethod' option to 'none'.

Tips
The training algorithm uses the number of threads given by the function maxNumCompThreads. To
learn how to change the number of threads used by MATLAB, see maxNumCompThreads.

See Also
doc2sequence | fastTextWordEmbedding | readWordEmbedding | tokenizedDocument |
vec2word | word2vec | wordEmbedding | wordEmbeddingLayer | wordEncoding |
writeWordEmbedding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b
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transform
Transform documents into lower-dimensional space

Syntax
dscores = transform(lsaMdl,documents)
dscores = transform(lsaMdl,bag)
dscores = transform(lsaMdl,counts)

dscores = transform(ldaMdl,documents)
dscores = transform(ldaMdl,bag)
dscores = transform(ldaMdl,counts)
dscores = transform( ___ ,Name,Value)

Description
dscores = transform(lsaMdl,documents) transforms documents into the semantic space of
the latent semantic analysis (LSA) model lsaMdl.

dscores = transform(lsaMdl,bag) transforms documents represented by the bag-of-words or
bag-of-n-grams model bag into the semantic space of the LSA model lsaMdl.

dscores = transform(lsaMdl,counts) transforms documents represented by the matrix of
word counts into the semantic space of the LSA model lsaMdl.

dscores = transform(ldaMdl,documents) transforms documents into the latent Dirichlet
allocation (LDA) topic probability space of LDA model ldaMdl. The rows of dscores are the topic
mixture representations of the documents.

dscores = transform(ldaMdl,bag) transforms documents represented by the bag-of-words or
bag-of-n-grams model bag into the LDA topic probability space of LDA model ldaMdl.

dscores = transform(ldaMdl,counts) transforms documents represented by the matrix of
word counts into the LDA topic probability space of LDA model ldaMdl.

dscores = transform( ___ ,Name,Value) specifies additional options using one or more name-
value pair arguments. These name-value pairs only apply if the input model is an ldaModel object.

Examples

Transform Documents into LSA Semantic Space

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
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textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154

Fit an LSA model with 20 components.

numCompnents = 20;
mdl = fitlsa(bag,numCompnents)

mdl = 
  lsaModel with properties:

              NumComponents: 20
           ComponentWeights: [1x20 double]
             DocumentScores: [154x20 double]
                 WordScores: [3092x20 double]
                 Vocabulary: [1x3092 string]
    FeatureStrengthExponent: 2

Use transform to transform the first 10 documents into the semantic space of the LSA model.

dscores = transform(mdl,documents(1:10))

dscores = 10×20

    5.6059   -1.8559    0.9286   -0.7086   -0.4652   -0.8340   -0.6751    0.0611   -0.2268    1.9320   -0.7289   -1.0864    0.7131   -0.0571   -0.3401    0.0940   -0.4406    1.7507   -1.1534    0.1785
    7.3069   -2.3578    1.8359   -2.3442   -1.5776   -2.0310   -0.7948    1.3411    1.1700    1.8839    0.0883    0.4734   -1.1244    0.6795    1.3585   -0.0247    0.3627   -0.5414   -0.0272   -0.0114
    7.1056   -2.3508   -2.8837   -1.0688   -0.3462   -0.6962   -0.0334   -0.0472   -0.4916    0.6496   -1.1959   -1.0171   -0.4020    1.2953   -0.4583    0.5984   -0.3890    1.1780    0.6413    0.6575
    8.6292   -3.0471   -0.8512   -0.4356   -0.3055    0.4671    1.4219   -0.8454    0.8270    0.4122    2.2082   -1.1770    1.7775   -2.2344   -2.7813    1.4979    0.7486   -2.0593    0.6376    1.0721
    1.0434    1.7490    0.8703   -2.2315   -1.1221    0.2848    2.0522   -0.6975   -1.7191   -0.2852    0.8879    0.9950   -0.5555    0.8842   -0.0360    1.0050    0.4158    0.5061    0.9602    0.4672
    6.8358   -2.0806   -3.3798   -1.0452   -0.2075    2.0970    0.4477    0.2080   -0.9532    1.6203    0.6653    0.0036    1.0825    0.6396   -0.2154   -0.0794    0.7108    1.8007   -4.0326   -0.3872
    2.3847    0.3923   -0.4323   -1.5340    0.4023   -1.0396    1.0326    0.3776   -0.2101   -1.0944   -0.7513   -0.2894    0.4303    0.1864    0.4922    0.4844    0.5191   -0.2378    0.9528    0.4817
    3.7925   -0.3941   -4.4610   -0.4930    0.4651    0.3404    0.5493    0.1470   -0.5065    0.2566    0.3394   -1.1529   -0.0391   -0.8800   -0.4712    0.9672    0.5457   -0.3639   -0.3085    0.5637
    4.6522    0.7188   -1.1787   -0.8996    0.3360    0.4531    0.1935    0.3328    0.8640   -1.6679   -0.8056   -2.1993    0.1808    0.0163   -0.9520   -0.8982    0.6603    3.6451    1.2412    1.9621
    8.8218   -0.8168   -2.5101    1.1197   -0.8673   -1.2336   -0.0768    0.1943    0.7629   -0.1222    0.3786    1.1611    0.2326    0.3415   -0.3327   -0.3792    1.7554    0.2526   -2.1574   -0.0193

Transform Documents into LDA Topic Mixtures

To reproduce the results in this example, set rng to 'default'.

rng('default')
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Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154

Fit an LDA model with five topics.

numTopics = 5;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0891106 seconds.
=====================================================================================
| Iteration  |  Time per  |  Relative  |  Training  |     Topic     |     Topic     |
|            | iteration  | change in  | perplexity | concentration | concentration |
|            | (seconds)  |   log(L)   |            |               |   iterations  |
=====================================================================================
|          0 |       0.00 |            |  1.212e+03 |         1.250 |             0 |
|          1 |       0.03 | 1.2300e-02 |  1.112e+03 |         1.250 |             0 |
|          2 |       0.03 | 1.3254e-03 |  1.102e+03 |         1.250 |             0 |
|          3 |       0.04 | 2.9402e-05 |  1.102e+03 |         1.250 |             0 |
=====================================================================================

mdl = 
  ldaModel with properties:

                     NumTopics: 5
             WordConcentration: 1
            TopicConcentration: 1.2500
      CorpusTopicProbabilities: [0.2000 0.2000 0.2000 0.2000 0.2000]
    DocumentTopicProbabilities: [154x5 double]
        TopicWordProbabilities: [3092x5 double]
                    Vocabulary: [1x3092 string]
                    TopicOrder: 'initial-fit-probability'
                       FitInfo: [1x1 struct]

Use transform to transform the documents into a vector of topic probabilities. You can visualize
these mixtures using stacked bar charts. View the topic mixtures of the first 10 documents.

topicMixtures = transform(mdl,documents(1:10));
figure
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barh(topicMixtures,'stacked')
xlim([0 1])
title("Topic Mixtures")
xlabel("Topic Probability")
ylabel("Document")
legend("Topic " + string(1:numTopics),'Location','northeastoutside')

Transform Word Count Matrix into LDA Topic Mixtures

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a corresponding
vocabulary of preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans = 1×2

         154        3092

Fit an LDA model with 20 topics. To reproduce the results in this example, set rng to 'default'.

rng('default')
numTopics = 20;
mdl = fitlda(counts,numTopics)
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Initial topic assignments sampled in 0.0809329 seconds.
=====================================================================================
| Iteration  |  Time per  |  Relative  |  Training  |     Topic     |     Topic     |
|            | iteration  | change in  | perplexity | concentration | concentration |
|            | (seconds)  |   log(L)   |            |               |   iterations  |
=====================================================================================
|          0 |       0.16 |            |  1.159e+03 |         5.000 |             0 |
|          1 |       0.19 | 5.4884e-02 |  8.028e+02 |         5.000 |             0 |
|          2 |       0.27 | 4.7400e-03 |  7.778e+02 |         5.000 |             0 |
|          3 |       0.22 | 3.4597e-03 |  7.602e+02 |         5.000 |             0 |
|          4 |       0.32 | 3.4662e-03 |  7.430e+02 |         5.000 |             0 |
|          5 |       0.24 | 2.9259e-03 |  7.288e+02 |         5.000 |             0 |
|          6 |       0.13 | 6.4180e-05 |  7.291e+02 |         5.000 |             0 |
=====================================================================================

mdl = 
  ldaModel with properties:

                     NumTopics: 20
             WordConcentration: 1
            TopicConcentration: 5
      CorpusTopicProbabilities: [1x20 double]
    DocumentTopicProbabilities: [154x20 double]
        TopicWordProbabilities: [3092x20 double]
                    Vocabulary: [1x3092 string]
                    TopicOrder: 'initial-fit-probability'
                       FitInfo: [1x1 struct]

Use transform to transform the documents into a vector of topic probabilities.

topicMixtures = transform(mdl,counts(1:10,:))

topicMixtures = 10×20

    0.0167    0.0035    0.1645    0.0977    0.0433    0.0833    0.0987    0.0033    0.0299    0.0234    0.0033    0.0345    0.0235    0.0958    0.0667    0.0167    0.0300    0.0519    0.0833    0.0300
    0.0711    0.0544    0.0116    0.0044    0.0033    0.0033    0.0431    0.0053    0.0145    0.0421    0.0971    0.0033    0.0040    0.1632    0.1784    0.0937    0.0683    0.0398    0.0954    0.0037
    0.0293    0.0482    0.1078    0.0322    0.0036    0.0036    0.0464    0.0036    0.0064    0.0612    0.0036    0.0176    0.0036    0.0464    0.0906    0.1169    0.0888    0.1115    0.1180    0.0607
    0.0055    0.0962    0.2403    0.0033    0.0296    0.1613    0.0164    0.0955    0.0163    0.0045    0.0172    0.0033    0.0415    0.0404    0.0342    0.0176    0.0417    0.0642    0.0033    0.0676
    0.0341    0.0224    0.0341    0.0645    0.0948    0.0038    0.0189    0.1099    0.0187    0.0560    0.1045    0.0356    0.0668    0.1196    0.0038    0.0931    0.0493    0.0038    0.0038    0.0626
    0.0445    0.0035    0.1167    0.0034    0.0446    0.0583    0.1268    0.0169    0.0034    0.1135    0.0034    0.0034    0.0047    0.0993    0.0909    0.0582    0.0308    0.0887    0.0856    0.0034
    0.1720    0.0764    0.0090    0.0180    0.0325    0.1213    0.0036    0.0036    0.0505    0.0472    0.0348    0.0477    0.0039    0.0038    0.0122    0.0041    0.0036    0.1605    0.1487    0.0465
    0.0043    0.0033    0.1248    0.0033    0.0299    0.0033    0.0690    0.1699    0.0695    0.0982    0.0033    0.0039    0.0620    0.0833    0.0040    0.0700    0.0033    0.1479    0.0033    0.0433
    0.0412    0.0387    0.0555    0.0165    0.0166    0.0433    0.0033    0.0038    0.0048    0.0033    0.0473    0.0474    0.1290    0.1107    0.0089    0.0112    0.0167    0.1555    0.2423    0.0040
    0.0362    0.0035    0.1117    0.0304    0.0034    0.1248    0.0439    0.0340    0.0168    0.0714    0.0034    0.0214    0.0056    0.0449    0.1438    0.0036    0.0290    0.1437    0.0980    0.0304

Input Arguments
lsaMdl — Input LSA model
lsaModel object

Input LSA model, specified as an lsaModel object.

ldaMdl — Input LDA model
ldaModel object
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Input LDA model, specified as an ldaModel object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a cell array of
character vectors. If documents is a tokenizedDocument, then it must be a column vector. If
documents is a string array or a cell array of character vectors, then it must be a row of the words of
a single document.

Tip To ensure that the function does not discard useful information, you must first preprocess the
input documents using the same steps used to preprocess the documents used to train the model.

bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a bagOfNgrams
object. If bag is a bagOfNgrams object, then the function treats each n-gram as a single word.

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts(i,j) corresponds to the number of times the
jth word of the vocabulary appears in the ith document. Otherwise, the value counts(i,j)
corresponds to the number of times the ith word of the vocabulary appears in the jth document.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'IterationLimit',200 sets the iteration limit to 200.

Note These name-value pairs only apply if the input model is an ldaModel object.

DocumentsIn — Orientation of documents
'rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated pair consisting
of 'DocumentsIn' and one of the following:

• 'rows' – Input is a matrix of word counts with rows corresponding to documents.
• 'columns' – Input is a transposed matrix of word counts with columns corresponding to

documents.

This option only applies if you specify the input documents as a matrix of word counts.
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Note If you orient your word count matrix so that documents correspond to columns and specify
'DocumentsIn','columns', then you might experience a significant reduction in optimization-
execution time.

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.
Example: 'IterationLimit',200

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
'LogLikelihoodTolerance' and a positive scalar. The optimization terminates when this
tolerance is reached.
Example: 'LogLikelihoodTolerance',0.001

Output Arguments
dscores — Output document scores
matrix

Output document scores, returned as a matrix of score vectors.

See Also
bagOfWords | fitlda | fitlsa | ldaModel | logp | lsaModel | predict | wordcloud

Topics
“Analyze Text Data Using Topic Models”
“Prepare Text Data for Analysis”
“Extract Text Data from Files”

Introduced in R2017b
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upper
Convert documents to uppercase

Syntax
newDocuments = upper(documents)

Description
newDocuments = upper(documents) converts each lowercase character in the input documents
to the corresponding uppercase character, and leaves all other characters unchanged.

Examples

Convert Documents to Uppercase

Convert all lowercase characters in an array of documents to uppercase.

documents = tokenizedDocument([
    "An Example of a Short Sentence" 
    "A Second Short Sentence"])

documents = 
  2x1 tokenizedDocument:

    6 tokens: An Example of a Short Sentence
    4 tokens: A Second Short Sentence

newDocuments = upper(documents)

newDocuments = 
  2x1 tokenizedDocument:

    6 tokens: AN EXAMPLE OF A SHORT SENTENCE
    4 tokens: A SECOND SHORT SENTENCE

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments
newDocuments — Output documents
tokenizedDocument array
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Output documents, returned as a tokenizedDocument array.

See Also
decodeHTMLEntities | erasePunctuation | eraseTags | eraseURLs | lower |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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vaderSentimentScores
Sentiment scores with VADER algorithm

Syntax
compoundScores = vaderSentimentScores(documents)
[compoundScores,positiveScores,negativeScores,neutralScores] =
vaderSentimentScores(documents)
___  = vaderSentimentScores( ___ ,Name,Value)

Description
Use vaderSentimentScores to evaluate sentiment in tokenized text with the Valence Aware
Dictionary and sEntiment Reasoner (VADER) algorithm. The vaderSentimentScores function uses,
by default, the VADER sentiment lexicon and modifier word lists.

The function supports English text only.

compoundScores = vaderSentimentScores(documents) returns sentiment scores for
tokenized documents. The function calculates the compound scores by aggregating individual token
scores, adjusted according to the algorithm rules and then normalized between -1 and 1. The function
discards all tokens with a single character, not present in the sentiment lexicon.

[compoundScores,positiveScores,negativeScores,neutralScores] =
vaderSentimentScores(documents)also returns the ratios for proportions of the documents
which are positive, negative, and neutral, respectively.

___  = vaderSentimentScores( ___ ,Name,Value) specifies additional options using one or
more name-value pairs.

Examples

Evaluate Sentiment in Text

Create a tokenized document.

str = [
    "The book was VERY good!!!!"
    "The book was not very good."];
documents = tokenizedDocument(str);

Evaluate the sentiment of the tokenized documents. Scores close to 1 indicate positive sentiment,
scores close to -1 indicate negative sentiment, and scores close to 0 indicate neutral sentiment.

compoundScores = vaderSentimentScores(documents)

compoundScores = 2×1

    0.7264
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   -0.3865

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Boosters',["verry" "verrry"] specifies to use the boosters "verry" and "verrrry".

SentimentLexicon — Sentiment lexicon
table

Sentiment lexicon, specified as a table with the following columns:

• Token – Token, specified as a string scalar.
• SentimentScore – Sentiment score of token, specified as a numeric scalar.

When evaluating sentiment, the software, by default, ignores tokens with one character and replaces
emojis with an equivalent textual description before computing the sentiment scores. For example,
the software replaces instances of the emoji "��" with the text "grinning face" and then evaluates the
sentiment scores. If you provide tokens with one character or emojis with corresponding sentiment
scores in SentimentLexicon, then the function does not remove or replace these tokens.

The default sentiment lexicon is the VADER sentiment lexicon.
Data Types: table

Boosters — List of booster words or n-grams
string array

List of booster words or n-grams, specified as a string array.

The function uses booster n-grams to boost the sentiment of proceeding tokens. For example, words
like "absolutely" and "amazingly".

For a list of words, the list must be a column vector. For a list of n-grams, the list has size
NumNgrams-by-maxN , where NumNgrams is the number of n-grams, and maxN is the length of the
largest n-gram. The (i,j)th element of the list is the jth word of the ith n-gram. If the number of
words in the ith n-gram is less than maxN, then the remaining entries of the ith row of the list are
empty.

The default list of booster n-grams is the VADER booster list.
Data Types: string
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Dampeners — List of dampener words or n-grams
string array

List of dampener words or n-grams, specified as a string array.

The function uses dampener n-grams to dampen the sentiment of proceeding tokens. For example,
words like "hardly" and "somewhat".

For a list of words, the list must be a column vector. For a list of n-grams, the list has size
NumNgrams-by-maxN , where NumNgrams is the number of n-grams, and maxN is the length of the
largest n-gram. The (i,j)th element of the list is the jth word of the ith n-gram. If the number of
words in the ith n-gram is less than maxN, then the remaining entries of the ith row of the list are
empty.

The default list of dampener n-grams is the VADER booster list.
Data Types: string

Negations — List of negation words
string array

List of negation words, specified as a string array.

The function uses negation words to negate the sentiment of proceeding tokens. For example, words
like "not" and "isn't".

The default list of negation words is the VADER negation list.
Data Types: string

Output Arguments
compoundScores — Compound sentiment scores
numeric vector

Compound sentiment scores, returned as a numeric vector. The function returns one score for each
input document. The value compoundScores(i) corresponds to the compound sentiment score of
documents(i).

The function determines the compound scores is computed by aggregating individual token scores,
adjusts them according to the VADER algorithm rules, and then normalizes them between -1 and 1.

positiveScores — Positive sentiment scores
numeric vector

Positive sentiment scores, returned as a numeric vector. The function returns one score for each input
document. The value positiveScores(i) corresponds to the positive sentiment score of
documents(i).

negativeScores — Negative sentiment scores
numeric vector

Negative sentiment scores, returned as a numeric vector. The function returns one score for each
input document. The value negativeScores(i) corresponds to the negative sentiment score of
documents(i).
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neutralScores — Neutral sentiment scores
numeric vector

Neutral sentiment scores, returned as a numeric vector. The function returns one score for each input
document. The value neutralScores(i) corresponds to the neutral sentiment score of
documents(i).

References
[1] Hutto, Clayton J., and Eric Gilbert. "Vader: A parsimonious rule-based model for sentiment

analysis of social media text." In Eighth international AAAI conference on weblogs and social
media. 2014.

See Also
ratioSentimentScores | tokenizedDocument

Topics
“Create Simple Preprocessing Function”
“Train a Sentiment Classifier”
“Create Simple Text Model for Classification”
“Analyze Text Data Containing Emojis”
“Analyze Text Data Using Topic Models”

Introduced in R2019b
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vec2word
Map embedding vector to word

Syntax
words = vec2word(emb,M)
[words,dist] = vec2word(emb,M)
___  = vec2word(emb,M,k)
___  = vec2word( ___ ,'Distance',distance)

Description
words = vec2word(emb,M) returns the closest words to the embedding vectors in the rows of M.

[words,dist] = vec2word(emb,M) returns the closest words to the embedding vectors in M, and
returns the distances dist of each to their source vectors.

___  = vec2word(emb,M,k) returns the top k closest words.

___  = vec2word( ___ ,'Distance',distance) specifies the distance metric.

Examples

Map Words to Vectors and Back

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding

emb = 
  wordEmbedding with properties:

     Dimension: 300
    Vocabulary: [1×1000000 string]

Map the words "Italy", "Rome", and "Paris" to vectors using word2vec.

italy = word2vec(emb,"Italy");
rome = word2vec(emb,"Rome");
paris = word2vec(emb,"Paris");

Map the vector italy - rome + paris to a word using vec2word.

word = vec2word(emb,italy - rome + paris)

word = 
"France"
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Find Closest Words to Vector

Find the top five closest words to a word embedding vector and their distances.

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Map the words "Italy", "Rome", and "Paris" to vectors using word2vec.

italy = word2vec(emb,"Italy");
rome = word2vec(emb,"Rome");
paris = word2vec(emb,"Paris");

Map the vector italy - rome + paris to a word using vec2word. Find the top five closest words
using the Euclidean distance metric.

k = 5;
M = italy - rome + paris;
[words,dist] = vec2word(emb,M,k,'Distance','euclidean');

Plot the words and distances in a bar chart.

figure;
bar(dist)
xticklabels(words)
xlabel("Word")
ylabel("Distance")
title("Distances to Vector")
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Input Arguments
emb — Input word embedding
wordEmbedding object

Input word embedding, specified as a wordEmbedding object.

M — Word embedding vectors
matrix

Word embedding vectors, specified as a matrix. Each row of M is a word embedding vector. M must
have emb.Dimension columns.

k — Number of closest words
positive integer

Number of closest words to return, specified as a positive integer.

distance — Distance metric
'cosine' (default) | 'euclidean'

Distance metric, specified as 'cosine' or 'euclidean'.
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Output Arguments
words — Output words
string vector

Output words, returned as a string vector.

dist — Distance of words to source vectors
vector

Distance of words to their source vectors, returned as a vector.

See Also
doc2sequence | fastTextWordEmbedding | ind2word | isVocabularyWord |
tokenizedDocument | word2ind | word2vec | wordEmbedding | wordEmbeddingLayer |
wordEncoding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b
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word2ind
Map word to encoding index

Syntax
M = word2ind(enc,words)

Description
M = word2ind(enc,words) returns the indices of words in the encoding enc.

Examples

Map Words to Encoding Indices

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);
documents(1:10)

ans = 
  10x1 tokenizedDocument:

    70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
    71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
    65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
    71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
    61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet
    68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
    64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
    70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
    70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
    69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Create a word encoding.

enc = wordEncoding(documents)

enc = 
  wordEncoding with properties:

      NumWords: 3092
    Vocabulary: [1x3092 string]
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Map the words "rose", "love", and "beauty" to encoding indices using the word2ind function.

words = ["rose" "love" "beauty"];
idx = word2ind(enc,words)

idx = 1×3

     7   387    79

Input Arguments
enc — Input word encoding
wordEncoding object

Input word encoding, specified as a wordEncoding object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.
Data Types: string | char | cell

Output Arguments
M — Vector of word encoding indices
vector of positive integers

Vector of word encoding indices.

See Also
fastTextWordEmbedding | ind2word | isVocabularyWord | tokenizedDocument | word2vec |
wordEmbedding | wordEmbeddingLayer | wordEncoding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2018b
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word2vec
Map word to embedding vector

Syntax
M = word2vec(emb,words)

Description
M = word2vec(emb,words) returns the embedding vectors of words in the embedding emb. If a
word is not in the embedding vocabulary, then the function returns a row of NaNs.

Examples

Map Words to Vectors and Back

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding

emb = 
  wordEmbedding with properties:

     Dimension: 300
    Vocabulary: [1×1000000 string]

Map the words "Italy", "Rome", and "Paris" to vectors using word2vec.

italy = word2vec(emb,"Italy");
rome = word2vec(emb,"Rome");
paris = word2vec(emb,"Paris");

Map the vector italy - rome + paris to a word using vec2word.

word = vec2word(emb,italy - rome + paris)

word = 
"France"

Input Arguments
emb — Input word embedding
wordEmbedding object

Input word embedding, specified as a wordEmbedding object.
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words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.
Data Types: string | char | cell

Output Arguments
M — Matrix of word embedding vectors
matrix

Matrix of word embedding vectors.

See Also
doc2sequence | fastTextWordEmbedding | isVocabularyWord | tokenizedDocument |
vec2word | word2ind | wordEmbedding | wordEncoding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b
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wordcloud
Create word cloud chart from text, bag-of-words model, bag-of-n-grams model, or LDA model

Syntax
wordcloud(str)
wordcloud(documents)
wordcloud(bag)

wordcloud(tbl,wordVar,sizeVar)
wordcloud(words,sizeData)
wordcloud(C)

wordcloud(ldaMdl,topicIdx)

wordcloud( ___ ,Name,Value)

wordcloud(parent, ___ )

wc = wordcloud( ___ )

Description
Text Analytics Toolbox extends the functionality of the wordcloud (MATLAB) function. It adds
support for creating word clouds directly from string arrays, and creating word clouds from bag-of-
words models, bag-of-n-gram models, and LDA topics. If you do not have Text Analytics Toolbox
installed, then see wordcloud (MATLAB).

wordcloud(str) creates a word cloud chart by tokenizing and preprocessing the text in str, and
then displaying the words with sizes corresponding to the word frequency counts. This syntax
supports English, Japanese, German, and Korean text.

wordcloud(documents) creates a word cloud chart from the words appearing in documents.

wordcloud(bag) creates a word cloud chart from the bag-of-words or bag-of-n-grams model bag.

wordcloud(tbl,wordVar,sizeVar) creates a word cloud chart from the table tbl. The variables
wordVar and sizeVar in the table specify the words and word sizes respectively.

wordcloud(words,sizeData) creates a word cloud chart from elements of words with word sizes
specified by sizeData.

wordcloud(C) creates a word cloud chart from the elements of categorical array C using frequency
counts.

wordcloud(ldaMdl,topicIdx) creates a word cloud chart from the topic with index topicIdx of
the LDA model ldaMdl.

wordcloud( ___ ,Name,Value) specifies additional WordCloudChart properties using one or
more name-value pair arguments.
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wordcloud(parent, ___ ) creates the word cloud in the figure, panel, or tab specified by parent.

wc = wordcloud( ___ ) returns the HeatmapChart object. Use wc to modify properties of the word
cloud after creating it. For a list of properties, see WordCloudChart Properties.

Examples

Create Word Cloud from Text Data

Extract the text from sonnets.txt using extractFileText and display the text of the first sonnet.

str = extractFileText("sonnets.txt");
extractBefore(str,"II")

ans = 
    "THE SONNETS
     
     by William Shakespeare
     
     
     
     
       I
     
       From fairest creatures we desire increase,
       That thereby beauty's rose might never die,
       But as the riper should by time decease,
       His tender heir might bear his memory:
       But thou, contracted to thine own bright eyes,
       Feed'st thy light's flame with self-substantial fuel,
       Making a famine where abundance lies,
       Thy self thy foe, to thy sweet self too cruel:
       Thou that art now the world's fresh ornament,
       And only herald to the gaudy spring,
       Within thine own bud buriest thy content,
       And tender churl mak'st waste in niggarding:
         Pity the world, or else this glutton be,
         To eat the world's due, by the grave and thee.
     
       "

Display the words from the sonnets in a word cloud.

figure
wordcloud(str);
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Create Word Cloud from Tokenized Documents

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Visualize the documents using a word cloud.

figure
wordcloud(documents);
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Create Word Cloud from Bag-of-Words Model

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154
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Visualize the bag-of-words model using a word cloud.

figure
wordcloud(bag);

Create Word Cloud from Table

Load the example data sonnetsTable. The table tbl contains a list of words in the variable Word,
and the corresponding frequency counts in the variable Count.

load sonnetsTable
head(tbl)

ans=8×2 table
       Word        Count
    ___________    _____

    {'''tis'  }      1  
    {''Amen'' }      1  
    {''Fair'  }      2  
    {''Gainst'}      1  
    {''Since' }      1  
    {''This'  }      2  
    {''Thou'  }      1  
    {''Thus'  }      1  
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Plot the table data using wordcloud. Specify the words and corresponding word sizes to be the Word
and Count variables respectively.

figure
wordcloud(tbl,'Word','Count');
title("Sonnets Word Cloud")

Create Word Cloud from LDA Topic

To reproduce the results in this example, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.
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bag = bagOfWords(documents)

bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154

Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.

mdl = fitlda(bag,20,'Verbose',0)

mdl = 
  ldaModel with properties:

                     NumTopics: 20
             WordConcentration: 1
            TopicConcentration: 5
      CorpusTopicProbabilities: [1x20 double]
    DocumentTopicProbabilities: [154x20 double]
        TopicWordProbabilities: [3092x20 double]
                    Vocabulary: [1x3092 string]
                    TopicOrder: 'initial-fit-probability'
                       FitInfo: [1x1 struct]

Visualize the first four topics using word clouds.

figure
for topicIdx = 1:4
    subplot(2,2,topicIdx)
    wordcloud(mdl,topicIdx);
    title("Topic: " + topicIdx)
end
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Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.

For string input, the wordcloud and wordCloudCounts functions use English, Japanese, German,
and Korean tokenization, stop word removal, and word normalization.
Example: ["an example of a short document";"a second short document"]
Data Types: string | char | cell

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

tbl — Input table
table

Input table, with columns specifying the words and word sizes. Specify the words and the
corresponding word sizes in the variables given by wordVar and sizeVar input arguments
respectively.
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Data Types: table

wordVar — Table variable for word data
string scalar | character vector | numeric index | logical vector

Table variable for word data, specified as a string scalar, character vector, numeric index, or a logical
vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string

sizeVar — Table variable for size data
string scalar | character vector | numeric index | logical vector

Table variable for size data, specified as a string scalar, character vector, numeric index, or a logical
vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string

words — Input words
string vector | cell array of character vectors

Input words, specified as a string vector or cell array of character vectors.
Data Types: string | cell

sizeData — Word size data
numeric vector

Word size data, specified as a numeric vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

C — Input categorical data
categorical array

Input categorical data, specified as a categorical array. The function plots each unique element of C
with size corresponding to histcounts(C).
Data Types: categorical

bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a bagOfNgrams
object. If bag is a bagOfNgrams object, then the function treats each n-gram as a single word.

ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an ldaModel object.

topicIdx — Index of LDA topic
nonnegative integer

Index of LDA topic, specified as a nonnegative integer.
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parent — Parent
figure | panel | tab

Parent specified as a figure, panel, or tab.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'HighlightColor','blue' specifies the highlight color to be blue.

The WordCloudChart properties listed here are only a subset. For a complete list, see
WordCloudChart Properties.

MaxDisplayWords — Maximum number of words to display
100 (default) | nonnegative integer

Maximum number of words to display, specified as a non-negative integer. The software displays the
MaxDisplayWords largest words.

Color — Word color
[0.2510 0.2510 0.2510] (default) | RGB triplet | character vector containing a color name |
matrix

Word color, specified as an RGB triplet, a character vector containing a color name, or an N-by-3
matrix where N is the length of WordData. If Color is a matrix, then each row corresponds to an
RGB triplet for the corresponding word in WordData.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
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Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]

HighlightColor — Word highlight color
[0.8510 0.3255 0.0980] (default) | RGB triplet | character vector containing a color name

Word highlight color, specified as an RGB triplet, or a character vector containing a color name. The
software highlights the largest words with this color.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
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Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]

Shape — Shape of word cloud
'oval' (default) | 'rectangle'

Shape of word cloud chart, specified as 'oval' or 'rectangle'.
Example: 'rectangle'

Output Arguments
wc — WordCloudChart object
WordCloudChart object

WordCloudChart object. You can modify the properties of a WordCloudChart after it is created. For
more information, see WordCloudChart Properties.

More About
Language Considerations

For string input, the wordcloud and wordCloudCounts functions use English, Japanese, German,
and Korean tokenization, stop word removal, and word normalization.

For other languages, you might need to manually preprocess your text data and specify unique words
and corresponding sizes in wordcloud.

To specify word sizes in wordcloud, input your data as a table or arrays containing the unique words
and corresponding sizes.
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See Also
bagOfNgrams | bagOfWords | textscatter | textscatter3 | tokenizedDocument |
wordCloudCounts

Topics
“Visualize Text Data Using Word Clouds”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b
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wordCloudCounts
Count words for word cloud creation

Syntax
T = wordCloudCounts(str)

Description
T = wordCloudCounts(str) tokenizes and preprocesses the text in str for word cloud creation
and returns a table T of words and frequency counts. The function supports English, Japanese,
German, and Korean text.

Examples

Word Cloud Frequency Counts

Extract the text from sonnets.txt using extractFileText.

str = extractFileText("sonnets.txt");

View the first sonnet.

i = strfind(str,"I");
ii = strfind(str,"II");
start = i(1);
fin = ii(1);
extractBetween(str,start,fin-1)

ans = 
    "I
     
       From fairest creatures we desire increase,
       That thereby beauty's rose might never die,
       But as the riper should by time decease,
       His tender heir might bear his memory:
       But thou, contracted to thine own bright eyes,
       Feed'st thy light's flame with self-substantial fuel,
       Making a famine where abundance lies,
       Thy self thy foe, to thy sweet self too cruel:
       Thou that art now the world's fresh ornament,
       And only herald to the gaudy spring,
       Within thine own bud buriest thy content,
       And tender churl mak'st waste in niggarding:
         Pity the world, or else this glutton be,
         To eat the world's due, by the grave and thee.
     
       "

Tokenize and preprocess the sonnets text and create a table of word frequency counts.
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T = wordCloudCounts(str);
head(T)

ans=8×2 table
     Word     Count
    ______    _____

    "thy"      281 
    "thou"     235 
    "love"     188 
    "thee"     162 
    "eyes"      90 
    "doth"      88 
    "make"      63 
    "mine"      63 

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.

For string input, the wordcloud and wordCloudCounts functions use English, Japanese, German,
and Korean tokenization, stop word removal, and word normalization.
Example: ["an example of a short document";"a second short document"]
Data Types: string | char | cell

Output Arguments
T — Table of word counts
table

Table of words counts sorted in order of importance. The table has columns:

Word String scalar of the word.
Count The number of times the word appears in the documents. The function

groups the counts of words that differ only by case or have a common stem
according to normalizeWords. For example, the function groups the counts
for "walk", "Walking", "walking", and "walks".

More About
Language Considerations

For string input, the wordcloud and wordCloudCounts functions use English, Japanese, German,
and Korean tokenization, stop word removal, and word normalization.

See Also
bagOfNgrams | bagOfWords | textscatter | textscatter3 | tokenizedDocument | wordcloud
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Topics
“Visualize Text Data Using Word Clouds”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b
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wordEmbedding
Word embedding model to map words to vectors and back

Description
A word embedding, popularized by the word2vec, GloVe, and fastText libraries, maps words in a
vocabulary to real vectors.

The vectors attempt to capture the semantics of the words, so that similar words have similar vectors.
Some embeddings also capture relationships between words, such as "king is to queen as man is to
woman". In vector form, this relationship is king – man + woman = queen.

Creation
Create a word embedding by loading a pretrained embedding using fastTextWordEmbedding,
reading an embedding from a file using readWordEmbedding, or by training an embedding using
trainWordEmbedding.

Properties
Dimension — Dimension of word embedding
positive integer

Dimension of the word embedding, specified as a positive integer.
Example: 300

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.
Data Types: string

Object Functions
vec2word Map embedding vector to word
word2vec Map word to embedding vector
isVocabularyWord Test if word is member of word embedding or encoding
writeWordEmbedding Write word embedding file

Examples

Download fastText Support Package

Download and install the Text Analytics Toolbox Model for fastText English 16 Billion Token Word
Embedding support package.
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Type fastTextWordEmbedding at the command line.

fastTextWordEmbedding

If the Text Analytics Toolbox Model for fastText English 16 Billion Token Word Embedding support
package is not installed, then the function provides a link to the required support package in the Add-
On Explorer. To install the support package, click the link, and then click Install. Check that the
installation is successful by typing emb = fastTextWordEmbedding at the command line.

emb = fastTextWordEmbedding

emb = 

  wordEmbedding with properties:

     Dimension: 300
    Vocabulary: [1×1000000 string]

If the required support package is installed, then the function returns a wordEmbedding object.

Map Words to Vectors and Back

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding

emb = 
  wordEmbedding with properties:

     Dimension: 300
    Vocabulary: [1×1000000 string]

Map the words "Italy", "Rome", and "Paris" to vectors using word2vec.

italy = word2vec(emb,"Italy");
rome = word2vec(emb,"Rome");
paris = word2vec(emb,"Paris");

Map the vector italy - rome + paris to a word using vec2word.

word = vec2word(emb,italy - rome + paris)

word = 
"France"

Convert Documents to Sequences of Word Vectors

Convert an array of tokenized documents to sequences of word vectors using a pretrained word
embedding.
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Load a pretrained word embedding using the fastTextWordEmbedding function. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding
support package. If this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Load the factory reports data and create a tokenizedDocument array.

filename = "factoryReports.csv";
data = readtable(filename,'TextType','string');
textData = data.Description;
documents = tokenizedDocument(textData);

Convert the documents to sequences of word vectors using doc2sequence. The doc2sequence
function, by default, left-pads the sequences to have the same length. When converting large
collections of documents using a high-dimensional word embedding, padding can require large
amounts of memory. To prevent the function from padding the data, set the 'PaddingDirection'
option to 'none'. Alternatively, you can control the amount of padding using the 'Length' option.

sequences = doc2sequence(emb,documents,'PaddingDirection','none');

View the sizes of the first 10 sequences. Each sequence is D-by-S matrix, where D is the embedding
dimension, and S is the number of word vectors in the sequence.

sequences(1:10)

ans=10×1 cell array
    {300×10 single}
    {300×11 single}
    {300×11 single}
    {300×6  single}
    {300×5  single}
    {300×10 single}
    {300×8  single}
    {300×9  single}
    {300×7  single}
    {300×13 single}

Read Word Embedding from Text File

Read the example word embedding. This model was derived by analyzing text from Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb = 
  wordEmbedding with properties:

     Dimension: 50
    Vocabulary: [1x9999 string]

Explore the word embedding using word2vec and vec2word.

king = word2vec(emb,"king");
man = word2vec(emb,"man");
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woman = word2vec(emb,"woman");
word = vec2word(emb,king - man + woman)

word = 
"queen"

Write Word Embedding to File

Train a word embedding and write it to a text file.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Train a word embedding using trainWordEmbedding.

emb = trainWordEmbedding(documents)

Training: 100% Loss: 0        Remaining time: 0 hours 0 minutes.

emb = 
  wordEmbedding with properties:

     Dimension: 100
    Vocabulary: [1x401 string]

Write the word embedding to a text file.

filename = "exampleSonnetsEmbedding.vec";
writeWordEmbedding(emb,filename)

Read the word embedding file using readWordEmbedding.

emb = readWordEmbedding(filename)

emb = 
  wordEmbedding with properties:

     Dimension: 100
    Vocabulary: [1x401 string]

See Also
doc2sequence | fastTextWordEmbedding | tokenizedDocument | trainWordEmbedding |
vec2word | word2vec | wordEmbeddingLayer | wordEncoding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
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“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b
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wordEmbeddingLayer
Word embedding layer for deep learning networks

Description
A word embedding layer maps word indices to vectors.

Use a word embedding layer in a deep learning long short-term memory (LSTM) network. An LSTM
network is a type of recurrent neural network (RNN) that can learn long-term dependencies between
time steps of sequence data. A word embedding layer maps a sequence of word indices to embedding
vectors and learns the word embedding during training.

This layer requires Deep Learning Toolbox™.

Creation

Syntax
layer = wordEmbeddingLayer(dimension,numWords)
layer = wordEmbeddingLayer(dimension,numWords,Name,Value)

Description

layer = wordEmbeddingLayer(dimension,numWords) creates a word embedding layer and
specifies the embedding dimension and vocabulary size.

layer = wordEmbeddingLayer(dimension,numWords,Name,Value) sets optional properties
on page 1-458 using one or more name-value pairs. Enclose each property name in single quotes.

Properties
Word Embedding

Dimension — Dimension of word embedding
positive integer

Dimension of the word embedding, specified as a positive integer.
Example: 300

NumWords — Number of words in model
positive integer

Number of words in the model, specified as a positive integer. If the number of unique words in the
training data is greater than NumWords, then the layer maps the out-of-vocabulary words to the same
vector.
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Parameters and Initialization

WeightsInitializer — Function to initialize weights
'narrow-normal' (default) | 'glorot' | 'he' | 'orthogonal' | 'zeros' | 'ones' | function
handle

Function to initialize the weights, specified as one of the following:

• 'narrow-normal' – Initialize the weights by independently sampling from a normal distribution
with zero mean and standard deviation 0.01.

• 'glorot' – Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer).
The Glorot initializer independently samples from a uniform distribution with zero mean and
variance 2/(numIn + numOut), where numIn = NumWords + 1 and numOut = Dimension.

• 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal
distribution with zero mean and variance 2/numIn, where numIn = NumWords + 1.

• 'orthogonal' – Initialize the input weights with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [3]

• 'zeros' – Initialize the weights with zeros.
• 'ones' – Initialize the weights with ones.
• Function handle – Initialize the weights with a custom function. If you specify a function handle,

then the function must be of the form weights = func(sz), where sz is the size of the weights.

The layer only initializes the weights when the Weights property is empty.
Data Types: char | string | function_handle

Weights — Layer weights
matrix

Layer weights, specified as a Dimension-by-(NumWords+1) array.

For input integers i less than or equal to NumWords, the layer outputs the vector Weights(:,i).
Otherwise, the layer maps outputs the vector Weights(:,NumWords+1).

Learn Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.
Example: 2

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
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regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Example: 2

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. If Name is set to '', then the software
automatically assigns a name at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Word Embedding Layer

Create a word embedding layer with embedding dimension 300 and 5000 words.

layer = wordEmbeddingLayer(300,5000)

layer = 
  WordEmbeddingLayer with properties:

         Name: ''

   Hyperparameters
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    Dimension: 300
     NumWords: 5000

   Learnable Parameters
      Weights: []

  Show all properties

Include a word embedding layer in an LSTM network.

inputSize = 1;
embeddingDimension = 300;
numWords = 5000;
numHiddenUnits = 200;
numClasses = 10;

layers = [
    sequenceInputLayer(inputSize)
    wordEmbeddingLayer(embeddingDimension,numWords)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers = 
  6x1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 1 dimensions
     2   ''   Word Embedding Layer    Word embedding layer with 300 dimensions and 5000 unique words
     3   ''   LSTM                    LSTM with 200 hidden units
     4   ''   Fully Connected         10 fully connected layer
     5   ''   Softmax                 softmax
     6   ''   Classification Output   crossentropyex

Initialize Word Embedding Layer with Pretrained Word Embedding

To initialize a word embedding layer in a deep learning network with the weights from a pretrained
word embedding, use the word2vec function to extract the layer weights and set the 'Weights'
name-value pair of the wordEmbeddingLayer function. The word embedding layer expects columns
of word vectors, so you must transpose the output of the word2vec function.

emb = fastTextWordEmbedding;

words = emb.Vocabulary;
dimension = emb.Dimension;
numWords = numel(words);

layer = wordEmbeddingLayer(dimension,numWords,...
    'Weights',word2vec(emb,words)')

layer = 
  WordEmbeddingLayer with properties:

         Name: ''
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   Hyperparameters
    Dimension: 300
     NumWords: 999994

   Learnable Parameters
      Weights: [300×999994 single]

  Show all properties

To create the corresponding word encoding from the word embedding, input the word embedding
vocabulary to the wordEncoding function as a list of words.

enc = wordEncoding(words)

enc = 
  wordEncoding with properties:

      NumWords: 999994
    Vocabulary: [1×999994 string]

References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward

neural networks." In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pp. 249-256. 2010.

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification." In Proceedings of the IEEE
international conference on computer vision, pp. 1026-1034. 2015.

[3] Saxe, Andrew M., James L. McClelland, and Surya Ganguli. "Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks." arXiv preprint arXiv:1312.6120 (2013).

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
doc2sequence | fastTextWordEmbedding | lstmLayer | sequenceInputLayer |
tokenizedDocument | trainNetwork | trainWordEmbedding | word2vec | wordEncoding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“List of Deep Learning Layers” (Deep Learning Toolbox)
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wordEncoding
Word encoding model to map words to indices and back

Description
A word encoding maps words in a vocabulary to numeric indices.

To encode documents as matrices of word or n-gram counts, use encode.

Creation

Syntax
enc = wordEncoding(documents)
enc = wordEncoding(words)
enc = wordEncoding(documents,Name,Value)

Description

enc = wordEncoding(documents) creates a word encoding from the words in documents.

enc = wordEncoding(words) creates a word encoding from an array of words.

enc = wordEncoding(documents,Name,Value) specifies additional options using one or more
name-value pair arguments. For example, 'Order','frequency' assigns lower indices to more
frequent words.

Input Arguments

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character vectors. If you
specify words as a character vector, then the function treats the argument as a single word.
Data Types: string | char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Order','frequency' sorts the indices by the total frequency in the documents in
descending order.
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Order — Sorting of indices
'first-seen' (default) | 'frequency'

Sorting of indices, specified as the comma-separated pair consisting of 'Order' and one of the
following:

• 'first-seen' – Assign indices to the words in the order in which they occur in the documents.
• 'frequency' – Assign indices to the words sorted by total frequency in the documents in

descending order.

If 'Order' is 'frequency' and multiple words have the same frequency, then the function does not
assign indices in any particular order.

MaxNumWords — Maximum number of words to encode
Inf (default) | positive integer

Maximum number of words to encode, specified as a positive integer or Inf. The function first sorts
the indices according to the 'Order' option and then encodes the top MaxNumWords words. If
MaxNumWords is Inf, then the function encodes all the words in the input documents.

Properties
NumWords — Number of words in model
nonnegative integer

Number of words in the model, specified as a nonnegative integer.

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.
Data Types: string

Object Functions
ind2word Map encoding index to word
word2ind Map word to encoding index
isVocabularyWord Test if word is member of word embedding or encoding

Examples

Create Word Encoding

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);
documents(1:10)
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ans = 
  10x1 tokenizedDocument:

    70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
    71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
    65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
    71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
    61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet
    68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
    64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
    70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
    70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
    69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Create a word encoding.

enc = wordEncoding(documents)

enc = 
  wordEncoding with properties:

      NumWords: 3092
    Vocabulary: [1x3092 string]

Create Word Encoding from Word Embedding

To create a word encoding from a word embedding, input the word embedding vocabulary to the
wordEncoding function as a list of words.

Load pretrained word embedding.

emb = fastTextWordEmbedding;

Extract the vocabulary.

words = emb.Vocabulary;

Create a word encoding using the vocabulary.

enc = wordEncoding(words)

enc = 
  wordEncoding with properties:

      NumWords: 999994
    Vocabulary: [1×999994 string]

To initialize the corresponding word embedding layer in a deep learning network with the word
embedding weights, use the word2vec function to extract the layer weights and set the 'Weights'
name-value pair of the wordEmbeddingLayer function. The word embedding layer expects columns
of word vectors, so you must transpose the output of the word2vec function.

dimension = emb.Dimension;
numWords = numel(words);
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layer = wordEmbeddingLayer(dimension,numWords, ...
    'Weights',word2vec(emb,words)')

layer = 
  WordEmbeddingLayer with properties:

         Name: ''

   Hyperparameters
    Dimension: 300
     NumWords: 999994

   Learnable Parameters
      Weights: [300×999994 single]

  Show all properties

Create Word Encoding of Top Words in Documents

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);
documents(1:10)

ans = 
  10x1 tokenizedDocument:

    70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
    71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
    65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
    71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
    61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet
    68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
    64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
    70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
    70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
    69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Create a word encoding. Sort the indices by frequency and encode only the top 100 words.

enc = wordEncoding(documents, ...
    'Order','frequency', ...
    'MaxNumWords',100)

enc = 
  wordEncoding with properties:
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      NumWords: 100
    Vocabulary: [1x100 string]

View the words corresponding to indices 1, 2, and 3 using the ind2word function.

idx = [1 2 3];
words = ind2word(enc,idx)

words = 1x3 string
    "thy"    "thou"    "love"

Map Encoding Indices to Words

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);
documents(1:10)

ans = 
  10x1 tokenizedDocument:

    70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
    71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
    65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
    71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
    61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet
    68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
    64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
    70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
    70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
    69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Create a word encoding.

enc = wordEncoding(documents)

enc = 
  wordEncoding with properties:

      NumWords: 3092
    Vocabulary: [1x3092 string]

View the words corresponding to indices 1, 3, and 5 using the ind2word function.

idx = [1 3 5];
words = ind2word(enc,idx)
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words = 1x3 string
    "fairest"    "desire"    "thereby"

Map Words to Encoding Indices

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);
documents(1:10)

ans = 
  10x1 tokenizedDocument:

    70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
    71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
    65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
    71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
    61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet
    68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
    64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
    70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
    70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
    69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Create a word encoding.

enc = wordEncoding(documents)

enc = 
  wordEncoding with properties:

      NumWords: 3092
    Vocabulary: [1x3092 string]

Map the words "rose", "love", and "beauty" to encoding indices using the word2ind function.

words = ["rose" "love" "beauty"];
idx = word2ind(enc,words)

idx = 1×3

     7   387    79

Convert Documents to Sequences of Word Indices

Load the factory reports data and create a tokenizedDocument array.
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filename = "factoryReports.csv";
data = readtable(filename,'TextType','string');
textData = data.Description;
documents = tokenizedDocument(textData);

Create a word encoding.

enc = wordEncoding(documents);

Convert the documents to sequences of word indices.

sequences = doc2sequence(enc,documents);

View the sizes of the first 10 sequences. Each sequence is a 1-by-S vector, where S is the number of
word indices in the sequence. Because the sequences are padded, S is constant.

sequences(1:10)

ans=10×1 cell array
    {1x17 double}
    {1x17 double}
    {1x17 double}
    {1x17 double}
    {1x17 double}
    {1x17 double}
    {1x17 double}
    {1x17 double}
    {1x17 double}
    {1x17 double}

See Also
doc2sequence | fastTextWordEmbedding | ind2word | isVocabularyWord |
tokenizedDocument | word2ind | word2vec | wordEmbedding | wordEmbeddingLayer

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2018b
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writeTextDocument
Write documents to text file

Syntax
writeTextDocument(documents,filename)
writeTextDocument(documents,filename,'Append',true)

Description
writeTextDocument(documents,filename) writes documents to the specified text file. The
function writes one document per line with a space between each word in UTF-8.

writeTextDocument(documents,filename,'Append',true) appends to the file instead of
overwriting.

Examples

Write Documents to Text File

Write an array of documents to a text file.

documents = tokenizedDocument([
    "an example of a short sentence" 
    "a second short sentence"])

documents = 
  2x1 tokenizedDocument:

    6 tokens: an example of a short sentence
    4 tokens: a second short sentence

filename = "documents.txt";
writeTextDocument(documents,filename)

Append Documents to Text File

Write an array of documents to a text file by appending the documents one at a time.

Create an array of tokenized documents.

documents = tokenizedDocument([
    "an example of a short sentence" 
    "a second short sentence"])

documents = 
  2x1 tokenizedDocument:

 writeTextDocument

1-471



    6 tokens: an example of a short sentence
    4 tokens: a second short sentence

Write the first document to the file.

filename = "documents.txt";
writeTextDocument(documents(1),filename)

View the contents of the file using extractFileText.

str = extractFileText(filename)

str = 
"an example of a short sentence"

Append the second document to the text file.

writeTextDocument(documents(2),filename,'Append',true)

View the contents of the file using extractFileText.

str = extractFileText(filename)

str = 
    "an example of a short sentence
     a second short sentence"

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.
Data Types: string | char

See Also
extractFileText | extractHTMLText | readPDFFormData | tokenizedDocument

Topics
“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b
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writeWordEmbedding
Write word embedding file

Syntax
writeWordEmbedding(emb,filename)

Description
writeWordEmbedding(emb,filename) writes the word embedding emb to the file filename. The
function writes the vocabulary in UTF-8 in word2vec text format.

Examples

Write Word Embedding to File

Train a word embedding and write it to a text file.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed versions of
Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space.
Extract the text from sonnetsPreprocessed.txt, split the text into documents at newline
characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Train a word embedding using trainWordEmbedding.

emb = trainWordEmbedding(documents)

Training: 100% Loss: 0        Remaining time: 0 hours 0 minutes.

emb = 
  wordEmbedding with properties:

     Dimension: 100
    Vocabulary: [1x401 string]

Write the word embedding to a text file.

filename = "exampleSonnetsEmbedding.vec";
writeWordEmbedding(emb,filename)

Read the word embedding file using readWordEmbedding.

emb = readWordEmbedding(filename)

emb = 
  wordEmbedding with properties:

 writeWordEmbedding
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     Dimension: 100
    Vocabulary: [1x401 string]

Input Arguments
emb — Input word embedding
wordEmbedding object

Input word embedding, specified as a wordEmbedding object.

filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.
Data Types: string | char

See Also
doc2sequence | fastTextWordEmbedding | readWordEmbedding | tokenizedDocument |
trainWordEmbedding | vec2word | word2vec | wordEmbedding | wordEmbeddingLayer |
wordEncoding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b

1 Functions
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